Q: Determine the value of V0 in given circuit.
Answer: The circuit can be redrawn like
Node 2 & 3 constitute a super node, with constraint equation
V3 - V2 = 6V
By applying KCL equation at super node
((V2 - 6)/6k) + (V2/12k)+ ((V3-6)/4k)+ (V3/12k) + (V3/6k) = 0
(V2/6k) + (V2/12k) + (V3/6k) + (V3/12k) + (V3/4k) - (6/4k) - (6/6k) =0
(V3/2k) - (30/12k) + (V2/4k) =0
3V2 +6V3 - 30 =0
V2 + 2V3 =10 ..........(1)
Now, from the constraint equation of super node
V2 =V3 -6
KCL equation (1) of super node become
3V3 - 6 =10
V3 = 16/3 volts
V2 = (16/3) - 6 = - 2/3 volts
By applying voltage division rule
V0 = (4k x V3)/(2k + 4k)
= 64/18 = 3.55 V Ans.