Components of Strain Energy Density Assignment Help

Assignment Help: >> Strain Energy in Terms of Principal Stresses - Components of Strain Energy Density

Components of Strain Energy Density:

You might recall in which the total stress field on an element might be considered as composed of two elements sets, one of which is the dilatation component and the other is the distortion component. Therefore, the net strain energy is also divided within two components, namely strain energy of dilatation, us and strain energy of distortion, ud.

If the principal elements of stress field are given through σ1, σ2 and σ3, we may write as,

                                                                    435_Components of Strain Energy Density.png

where the dilatation or spherical components of the stress field is given by

123)/3 or (σxyz)/3

Now let us acquired an expression for strain energy of distortion, using the form of Eq. (27).

ud  = 1/2E [(σ1- σs)2 +( σ2- σs)2 +( σ3- σs)2]

-2v[(σ1- σs) ( σ2- σs) +( σ2- σs) ( σ3- σs)+ ( σ3- σs) ( σ1- σs)]

=1/18E ({3 σ1 -( σ1+ σ2+ σ3)}2 +{3 σ2 -( σ1+ σ2+ σ3)}2 +{3 σ3 -( σ1+ σ2+ σ3)}2 )

-2v({3 σ1 -( σ1+ σ2+ σ3)} ({3 σ2 -( σ1+ σ2+ σ3)} + . . . )

=1/18E ((2 σ1- σ2- σ3)2 +(2 σ2- σ1- σ3)2 +(2 σ3- σ1- σ2)2

-2v{(2 σ1- σ2- σ3) (2 σ2- σ3- σ1) +(2 σ2- σ3- σ1) (2 σ3- σ1- σ2)

+(2 σ3- σ2- σ1) (2 σ1- σ2- σ3)})

=1/18E [6(σ12 + σ22 + σ32) -6 (σ1 σ2 + σ2 σ3+ σ3 σ1)

+6v(σ12 + σ22 + σ32 - σ1 σ2 - σ2 σ3- σ3 σ1)

 =(1+v)3E [σ12 + σ22 + σ32 - σ1 σ2 - σ2 σ3- σ3 σ1]

=2(1+v)6E [1/2 ((σ1- σ2)2 +(σ2- σ3)2 +(σ3- σ1)2)]

= 1/12E [(σ1- σ2)2 +(σ2- σ3)2 +(σ3- σ1)2]{as shear modulus, G = E/2(1+v)}                  . . . (29)

Thus, ud  = 1/12G [(σ1- σ2)2 +(σ2- σ3)2 +(σ3- σ1)2]

ud = 1/3G [(σ1- σ2/2)2 + (σ2- σ3/2)2 + (σ3- σ1/2)2]                                                        . . .(30)

Eq. (30) is more significant since the terms σ1- σ2/2, σ2- σ3/2 and σ3- σ1/2 represent the three extreme values of shear stress components.

The dilatation component of strain energy, us is not of much practical significance. However, if desired it may easily be obtained using the form of Eq. (27), as

us =1/2E(σs2s2s2 -2v (σsσssσs + σsσs))

i.e.  us =3/2E (σs2 -2vσs2)

Or us = 3σs2 (1-2v)/2E                                                                                                  . . . (31)

Or   us = σs2/2K                                                                                                                        . . . (32)

where, K is the Bulk Modulus given by E/3(1 - 2v)

The expression for strain energy density may be used to obtain, wherever required, to obtain the total strain energy by the expressions

484_Components of Strain Energy Density1.png

Like expressions have wide applications within structural analysis and theory of elasticity. Therefore, in analyzing the state of stress, energy density expressions have been found to be adequate.

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd