Bayesian Nash Equilibrium - Normal-Form Representation Assignment Help

Assignment Help: >> Static game of incomplete information - Bayesian Nash Equilibrium - Normal-Form Representation

Bayesian Nash Equilibrium -  Normal-Form Representation

Let player  i's  possible payoff functions  be  represented  byui(a1,  ..  .,  an;  t1)  , where t, is called player i's  type and belongs to a set of possible types (or type space) Ti.  Each  type ti, corresponds to a different payoff function that player  i might have. Given  the definition  of  player's type, saying that player  i  know her  own payoff function is equivalent to saying that player i knows her type. Likewise, saying that player i may be uncertain about the other players' payoff functions is equivalent to saying that player i may be  uncertain about the types of other players, denoted by t-i = (t1,  ...,  ti - 1, ti + 1,  ...,  tn). We use  ti,  to denote the set of all possible values of ti,  and we use the probability distribution  pi(t - i | ti) to denote player  i's  belief  about the other players'  types ti, given player  1's knowledge of her own type, t,.

Joining the new concepts of  types and beliefs with the familiar elements of the normal-form  representation  of a  static game of complete information yields the normal-form representation of a static Bayesian game.  

Definition: The  normal-form representation  of  an  n-player static Bayesian game  specifies the players' action spaces  A1,  ..., An,  their  type  spaces TI  ,...,  Tn,  their beliefs p1,  ...,  pn,  and their payoff functions u1,  ...,  un.  Player  i's .type,  ti,  is  privately known  by  player  i,  determines player i's payoff function, ui(a1,  .  . .  ,  an;  ti)  ,  and  is a member  of  the set  of  possible types, T,. Player  i's  belief  pi(t  - i |ti) describes  i's'uncertainty  about  the  n-1  other players'  possible types,  t.,,  given  i's  own  type,  ti. We  denote  this  game  by G = {A1,  ...,  An; T1,  ...,  Tn; P1,  ...,  pn; U1,  ...,  un) . Following Harsanyi  (1967),  we  will assumes that the timing  of a static Bayesian game is as follows:

1)  Nature draws a type vectort = (ti,  ...,  tn)  ,  where t, is drawn form  the set of possible type vector Ti.
2) Nature reveals ti  to player i  but not to any other player.

3)  The  players simultaneously choose actions, player  i choosing  a, from  the feasible set Ai.
4)  Payoffs  ui(ai,  . . .  ,  an;  ti)  are received.

Definition of static Bayesian game
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd