Slope and deflection:
The slope and deflection shall be given by
EI (dy/dx) = (W b/2l) x2 - W [ x - a]2 + (Wb/6l) [b2 - l 2 ]
EIy = (Wb/6l) x3 - W [ x - a]3 + Wb [b2 - l 2 ] x
Slope at A, (at x = 0), & noting that (W/2) [ x - a] is not applicable
(dy/dx ) A = θ A = - W b/6EIl [l 2 - b2]
=- Wb / 6 EI l [(a + b)2 - a2 ] =- W a b/6 EI l (a + 2b)
Slope at B, (at x = l),
(dy/dx)B θ B = (W b/2l) . l 2 - (W/2) [l - a]2 + (W b/6l) [b2 - l 2 ]
= (Wb /6EI l) [3l 2 - 3b l + b2 - l 2 ]
= (Wb/6EI l) [2 (a + b)2 - 3b (a + b) + b2 ]
= (Wb/6EI l) (2 a2 + ab) = (Wa b /6EI l)(2a + b)
or θB = (W a b /6EI l )(2a + b)
Deflection at centre ( x = l/2) ,
EI y = (Wb/6l) . ( l/2 )3- (W/6) [ (l/2) - a]3 + W b/6l [b2 - l 2 ] (l/2)
= W b l2 /48 + (Wb/12) (b2 - l 2 )
= (Wb/48) × [l 2 + 4b2 - 4l 2 ]
= (Wb/48) × [4b2 - 3l 2 ]
∴ yC = ( Wb /48 EI) × [4b2 - 3l 2 ]
=- (Wb/48 EI) × [3l 2 - 4b2 ]
For deflection under the load yw again [ x - a]3 vanishes. Hence, by putting x = a
yw = Wb/6EI l [a3 + b2 a - l 2 a]
= (W a b /6EI l )[a2 + b2 - a2 - b2 - 2ab]
Yw = W a2 b2/3EIl
For maximum deflection, dy/dx =0
0 = (Wb/2l ) x2 - (W/2) [0 - a]2 + Wb /6l [b2 - l 2 ]
Wb/2l . x2 = Wb / 6l[l 2 - b2 ]
putting the value of x into the Equation, we may get
EIy max = Wb x/ 6l [ x2 + b2 - l 2 ]