Evaluate the principal stresses and principal planes:
The state of stress at a point in a loaded solid is given on two faces of an element whose shape is a triangular prism as illustrated in Figure. Evaluate the principal stresses & principal planes.
Figure
Solution
Here, we ought to first get the value of sx and subsequent calculations shall be a standard set.
Given sy = 48 MPa
tyx = 36 MPa ∴ txy = - 36 MPa
s 30 o = 60 MPa (aspect angle of plane BC is + 30o)
s30o =( sx+ sy ) /2 + ((sx - sy) /2 ) cos (2´30o) + txy sin (2´30o)
60 =( sx+ 48) /2 + ((sx - 48) /2 ) cos (60o) + (-36) sin 60o
60 = sx /2 + 24 + (sx /2 ) cos 60o - 24 cos 60o -36 sin 60o
i.e. 60 = (sx /2 )(1+ cos 60o) + 24- 24 cos 60o -36 sin 60o
∴ sx = 2/ (1+0.5)[60-24-(-24´0.5)-(-36)´0.866]
=2/1.5 [79.177]=105.57MPa
s 1 =76.835 + 46.093MPa
s 2 =76.835 - 46.093MPa
Assume the aspect angles of the principal planes be f
f = -25.6715 or or 64.3250
Substituting
f= - 25.675o (or 2f = - 51.35o ) in expression for sn
sn =( 105.57 + 48 )/2 +( 105.57 - 48)/2 cos (- 51.35o ) - 36 sin (- 51.35o )
= 122.92 MPa
f1 = - 25.675o and f2 = 64.325o