Determine Current using Norton Theorem Assignment Help

Assignment Help: >> Nortons Theorem - Determine Current using Norton Theorem

Q:  Determine the current Io by using Norton's theorem.

1184_current.png

Solution:

We have to calculate I0  using Norton's theorem.

Step 1:  Replacing RL along with a short circuit to discover IN. Here RL is equal to 6k resistor.

2387_current1.png

Step 2: Determine current IN

139_current2.png

                        Through loop 2, we may write

                                                            I2=2mA

            For path 1

                                    4k(I1-IN)+2k(I1-I2)-6=0

                                    4kI1-4kIN+2kI1-2kI2-6=0

                                                6kI1-4kIN-2kI2=6

                        Putting the value of I2 from above eq.

                                                    6kI1-4kIN-2k(2m) = 6

                                                            6kI1-4kIN = 10

            At Loop 3

                                                4k (IN-I2) +4k (IN-I1) =0

                                                4kIN-4kI2+4kIN-4kI1=0

                                                             -4kI1+8kIN=8

                        Solving out equations for loops 1 & 3

                                                12kI1-8kIN=20

                                               -12kI1+24kIN=24

                                                                16kIN=44

                                                            IN = 444/16 =2.75 mA

Step 3: Determining RN

To determine RN we have to short circuit all voltage sources & open the current sources.

638_current3.png

            For RN

                                    2kII4k+4k =((2kx4k)/(2k+4k))+4k

                                            RN = 5.33kΩ

Step 4:

After determining IN & RN, re-inserting the load resistance RL in the circuit in parallel RN and letting the IN  current source parallel along these two resistances.

2284_current4.png

                                                Io= (2.75m) (5.33k)x1/(6+5.33)k)

                                                 Io =1.29mA

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd