Indices Calculation
Illustration: - construct index numbers of price from the following data by applying
Laspeyres method,
Paasche method
Bowley's method,
Fisher's ideal method, and
Marshall-Edgeworths method.
|
|
2006
|
|
2007
|
Commodity
|
Price
|
Quantity
|
Price
|
Quantity
|
A
|
2
|
8
|
4
|
6
|
B
|
5
|
10
|
6
|
5
|
C
|
4
|
14
|
5
|
10
|
D
|
2
|
19
|
2
|
13
|
Solution: -
Calculation of various indices
Commodity
|
2006 price qty. P0 q0
|
2007 prices qty. P1 q1
|
P1q0 P0q0 P1q1 P0q1
|
A
|
82
|
46
|
32 16 24 12
|
B
|
105
|
65
|
60 50 30 25
|
C
|
144
|
510
|
70 56 50 40
|
D
|
192
|
213
|
38 38 26 26
|
|
|
|
∑p1q0 =200, ∑P0q0 =160, ∑p1q1 =130, ∑p0q1 =103
|
Laspeyres method:
p01 = ∑p1q0 / ∑p0q0 x 100; where ∑p1q0 = 200, ∑p0q0 = 160
p01 = 200/160 x 100 = 125.
Paasche's method:
p01 = ∑p1q1 / ∑p0q1 x 100; where ∑p1q1 = 130, ∑p0q1 = 103
p0i = 130 / 103 x 100= 126.21
Bowley's method:
p01 = ∑p1q0/∑p0q0 + ∑p1q1/∑p0q1 / 2 +100 = 200/160 + 130/103 / 2 +100
= 1.25 + 1.262 / 2 x 100 = 126.2 / 2 x 100 = 125.6
Or p0i = L + P / 2 = 125 + 126.2 / 2 = 125.6
Fisher's ideal method:
p01 = √(∑)p1q0/∑p0q0 x ∑p1q1/∑p0q1 x 100 √200/160 x 130/102 x 100
= √1.578 x 100 = 1.2561 x 100 = 125.61
Marshall-Edgeworths method:
p01=∑(q0 + q1) p1 / ∑(q0 + q1) p0 x 100 = ∑p1q0 + ∑p1q1 / ∑p0q0 + ∑p0q1
= 200 + 130 / 160 +103 x 100 = 330/263 x 100 = 330/263 x 100 = 125.48