Indices Calculation Assignment Help

Assignment Help: >> Index Numbers - Indices Calculation

Indices Calculation

Illustration: - construct index numbers of price from the following data by applying
   
Laspeyres method,
Paasche method
Bowley's method,
Fisher's ideal method, and
Marshall-Edgeworths method.

 

 

2006 

 

2007

Commodity

Price

Quantity

Price

Quantity

A

2

8

4

6

B

5

10

6

5

C

4

14

5

10

D

2

19

2

13


Solution: -
                                                                       
Calculation of various indices

Commodity

2006 price qty.
P0   q0

2007 prices qty.
P1
q1

P1q0  P0q0 P1q1  P0q1

A

82

46

32       16      24
12

B

105

65

60        50      30
25

C

144

510

70       56       50
40

D

192

213

38       38        26
26

 

 

 

∑p1q0 =200, ∑P0q0 =160, ∑p1q1 =130, ∑p0q1 =103

Laspeyres method:

 p01 = ∑p1q0 / ∑p0q0 x 100; where ∑p1q0 = 200, ∑p0q0 = 160

p01 = 200/160 x 100 = 125.

Paasche's method:

 p01 = ∑p1q1 / ∑p0q1 x 100; where ∑p1q1 = 130, ∑p0q1 = 103

p0i = 130 / 103 x 100= 126.21

Bowley's method:

 p01 = ∑p1q0/∑p0q0 + ∑p1q1/∑p0q1 / 2 +100 = 200/160 + 130/103 / 2 +100

= 1.25 + 1.262 / 2 x 100 = 126.2 / 2 x 100 = 125.6

Or p0i = L + P / 2 = 125 + 126.2 / 2 = 125.6

Fisher's ideal method:

 p01 = √(∑)p1q0/∑p0q0 x ∑p1q1/∑p0q1 x 100 √200/160 x 130/102 x 100

= √1.578 x 100 = 1.2561 x 100 = 125.61

Marshall-Edgeworths method:

p01=∑(q0 + q1) p1 / ∑(q0 + q1) p0 x 100 = ∑p1q0 + ∑p1q1 / ∑p0q0 + ∑p0q1

= 200 + 130 / 160 +103 x 100 = 330/263 x 100 = 330/263 x 100 = 125.48

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd