Determine the transformation matrix Assignment Help

Assignment Help: >> Homogeneous Coordinates - Determine the transformation matrix

Determine the transformation matrix:

Determine the transformation matrix to rotate an object by 90o counter clockwise around its centre. The centre of the object is at [5, 4].

Solution

Primary translate the centre of the object to its origin by utilizing transformation matrix.

307_Determine the transformation matrix.png

After that the rotation matrix is specified as

859_Determine the transformation matrix1.png

and after that translate back to the original centre by utilizing       

1811_Determine the transformation matrix2.png

Thus the translation matrix becomes

277_Determine the transformation matrix3.png

The translation matrix for rotating around any point P (p, q) through arbitrary angle may be represented as

1620_Determine the transformation matrix4.png

Likewise, reflection through any arbitrary axis may be accomplished by first translating an object, so that the arbitrary axis passes from the origin. After that rotating both about the origin yet the line is coincident with one of the coordinate axis. After that reflect as it has been described before and then reverse the procedure brings the arbitrary axis along with the object to its rigid position as discussed in the above example.

Determine scaling matrix Determine the form of the matrix for reflection
Determine the transformation
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd