Kolmogorov-Smirnov (K-S) Test for Normal and Lognormal Distributions Assignment Help

Assignment Help: >> Goodness of Fit Tests - Kolmogorov-Smirnov (K-S) Test for Normal and Lognormal Distributions

Kolmogorov-Smirnov (K-S) Test for Normal and Lognormal Distributions

A goodness-of-fit test for use with the normal distribution when the parameters are estimated is a version of the Kolmogorov-Smirnov test developed by H. W. Lilliefors [1967]. It compares the empirical cumulative distribution function with the normal cumulative distribution function. The hypotheses are:

H0: The failure times are normal.

H1:  The failure times are not normal.

The test statistic is Dn = max {D1, D2} where

883_Kolmogorov-Smirnov (K-S) Test for Normal and Lognormal 1.png

130_Kolmogorov-Smirnov (K-S) Test for Normal and Lognormal 2.png

2236_Kolmogorov-Smirnov (K-S) Test for Normal and Lognormal 3.png

1621_Kolmogorov-Smirnov (K-S) Test for Normal and Lognormal 4.png

if Dn < Dcrit , then accept H0; if Dn  ≥ Dcrit , then accept H1. The values for Dcrit may be found in Statistical tables. This test is appropriate for complete samples only.

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd