Inverse Interpolation Assignment Help

Assignment Help: >> F test variance analysis - Inverse Interpolation

Inverse Interpolation

Given:  a set of values of x and y = ƒ(x), we are interested to find the value of x for a certain value of y. this is termed as inverse interpolation.

Thus for four arguments a0, a1, a2 and a3 the value of x for given value of ƒ(x) is given by the formula:

x = [ƒ(x) - ƒ(a1)] [ƒ(x) - ƒ(a2)] [ƒ(a0) - ƒ(a3)]/[ƒ(a0) - ƒ(a1)] [ƒ(a0) - ƒ(a2)] [ƒ(a0) - ƒ(a3)]× (a0) + [ƒ(x) - ƒ(a0)] [ƒ(x) - ƒ(a2)] [ƒ(x) - ƒ(a3)]/ [ƒ(a1) - ƒ(a0)][ƒ(a1) - ƒ(a2)] [ƒ(a1) - ƒ(a3)] × (a1) + [ƒ(x) - ƒ(a0)] [ƒ(x) - ƒ(a2)] [ƒ(x) - ƒ(a3)]/ [ƒ(a2) - ƒ(a0)][ƒ(a2) - ƒ(a2)] [ƒ(a2) - ƒ(a3)] × (a2) + [ƒ(x) - ƒ(a0)] [ƒ(x) - ƒ(a1)] [ƒ(x) - ƒ(a2)]/ [ƒ(a3) - ƒ(a0)][ƒ(a3) - ƒ(a2)] [ƒ(a3) - ƒ(a3)] × (a3)

Illustration: you are given the following information:

x

5

6

9

11

ƒ(x)

12

13

14

-16


Find the value of x when ƒ(x) = 15.

Solution: in the usual notation of Lagrange's formula:

x

a0 = 5

a1 = 6

a2 = 9

a3 = 11

y = ƒ(x)

12

13

13

13


We have to calculate x when ƒ(x) = 15. Using inverse interpolation formula:

x = (15 - 13) (15 - 14) (15 - 16)/(12 - 13) (12 - 14) (12 - 16) × 5 + (15 - 12) (15 - 14) (15 - 16)/(13 - 12) (13 - 14) (13 - 16) × 6 + (15 - 12) ( 15 - 13) (15 - 16)/(14 - 12) (14 - 13) (14 - 16) × 9 + (15 - 12) ( 15- 13) (15 - 14)/(16 - 12) (16 - 13) (16 - 14) × 11

= (2) × (1) × (-1)/(-1) (-2) (-4) × 5 + (3) (1) (-1)/(1) (-1) (-3) × 6 + (3) (2) (-1)/ (2) (1) (-2) × 9 + (3) (2) (1)/ (4) (3) (2) × 11

= 1.25 - 6 + 13.5 + 2.75

= 11.5

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd