Possible cases Assignment Help

Assignment Help: >> Damped Free Vibration - Possible cases

Possible cases:

The nature of this solution based on the term in the square root. There are three following possible cases:

(1)    (c/m) 2  > 4   (k /m) -  Overdamped case

(2)    (c/m)2  = 4 (k/m)   -  Critically damped case

(3)   (c/m)2  < 4 (k/m)   - Underdamped case

Let the critical damping coefficient be Cc, Hence,

1071_Possible cases.png

Almost all of the systems are underdamped.

Here,

1050_Possible cases1.png

The ratio of damping coefficient (c) to critical damping coefficient is known as damping factor 'J'.

                                                J =  C /Cc                                               . . . (17)

1994_Possible cases2.png .....(18)

here ωd is natural frequency of the damped free vibrations.

Hence, underdamped case

x = e -  (c /2m) ( X1  ei ωd t  + X   e- i ωd t )                      . . . (19)

For critically damped system

x = ( X1 + X 2 t ) e - (  c/2m)   t

For overdamped system

1810_Possible cases3.png      . . . (20)

             2362_Possible cases4.png    . . . (21)

2123_Possible cases5.png

Figure

 

The Equation (19) may also be written as

x = X e-ζ ωn t cos (ωd t + φ)                     . . . (23)

Here X and φ are constants. X represents amplitude and φ phase angle.

Assume at t = t,  x = x0.

∴          x0  = X e- ζ ωn  t  cos (ωd t + φ)                            . . . (24)

 After one time period

t = t + t p             and            x = x1

∴          x  = X e- ζ ωn (t + t p )  cos {ωd (t + tp ) + φ}                           . . (25)

Dividing Eq. (24) by Eq. (25)

2466_Possible cases6.png

As

 t p  = 1/  f p = 2π/ ωd

or         ωd t p  = 2π

1000_Possible cases7.png

Since    cos θ= cos (2π+ θ)

∴          cos (ωd  t + φ) = cos {ωd  t + 2π + φ}

 ∴         x0  /x1 = e ζ ωn t p

 or        L  = x0 /x1= ζ ωn tp = ζ ωn (2π/ ωd )=

1620_Possible cases8.png

or

        1476_Possible cases9.png                  -------- (26)

 1620_Possible cases8.pngis known as logarithmic decrement.

If at  t = t + n t p

It might be proved that

     222_Possible cases11.png    --------(27)

If         

1651_Possible cases12.png

Figure 8 shows displacement time diagram for the above indicated three cases. For critically damped & overdamped system mass returns to its original place (indisplaced) gradually and there is no vibration. Vibration is possible just in the underdamped system as the roots of Eq. (14) are hard and solution consists of periodic functions (Eq. (22)).

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd