Cantilever Beams with Udl on Left Portion Assignment Help

Assignment Help: >> Cantilever Beam with a UDL on Some Portion - Cantilever Beams with Udl on Left Portion

Cantilever Beams with Udl on Left Portion:

Consider a cantilever beam loaded with a Udl of w/unit length on portion AC as shown in Figure (a).

The Udl is added in both directions on the portion CB as illustrated in Figure (b).

765_Cantilever Beams with Udl on Left Portion.png

(a)

762_Cantilever Beams with Udl on Left Portion1.png

(b)

Figure

Consider a section X-X at a distance x from left end,

Moment, M =- w . x . (x/2) + w (x - (l/2)  ( x - (l/2))

 =- w x2/2 +(w/2)[x-(l/2)]2                    (Hogging BM)

The governing equation for deflection is :

EI d 2 y/ dx2      = M = - w x2/2+(w/2)[x-(l/2)]2    

Integrating the Eq. (135), we can get

EI (dy/dx)         = - w x2/6+(w/6)[x-(l/2)] 3  +C1  

EI y      = - w x2/24+(w/24)[x-(l/2)]24  +C1x+C2  

The constants C1 and C2 can be found from boundary conditions. The boundary conditions are :

 At B,           x = l,            dy/ dx  = 0              ------------ (1)

 At B,              x = l,           y = 0                            --------- (2)

Applying the boundary condition (1) into the Eq. (136), we may get

0 = - wl 3/6 +   (w/6)(l-(l/2)3+C1

∴          C1 =   wl3/ 6[1-(1/8)]= 7 wl3/48

Applying the boundary condition (2) and value of C1 into the Eq. (137), we may get

0 =- wl 4/24 +  (w/24)(l-(l/2))4  -7 wl 4 / 48   + C2

∴          C2  = wl 4 /24   [1 -( 1/16) - (7/2) ]  = wl 4/ (24 × 16) (16 - 1 - 56)

=- 39 wl 4 /(24 × 16)

C2  = - 39 wl 4 /384

 The slope and deflection equations shall be :

EI (dy/dx)         = - w x3/6+(w/6)[x-(l/2)] 3  +7   w x3 /48       

EI y      = - w x4/24+(w/24)[x-(l/2)] 4  +7   w x3 /48  x-39wl4/384     

 Slope at A, (x = 0),

θA = + 7 wl 3 / 48 EI

Slope at C ( x = l/2) ,

EI θC = -(w/6)(1/2)3+  7 w l3/48 EI + = +6 w l 3/48 EI

Deflection at D (x = 3l /4) ,

EI θD = - (w/6) (   3l /4)3  +  (w/6) [ 3l/ 4  -(l/ 2)] + 7 wl3 /48

=- 27 wl3/24 × 16 + wl 3/24 × 16 +7 wl 3 /48

= wl 3/(24 × 16) [- 27 + 1 + 56] =30 wl3/384 = + 5 wl3/64

∴          θ D       = +5 wl 3   /64 EI

Deflection at A, (x = 0)

yC  =- 39 wl 4 /384 EI

Deflection at C, (x = l/2)

EI yC  =- (w/24) (l/ 2) 4      +7 w l3/48  ×(l/2) -39 w l 4 /384

=( wl 4/384) [- 1 + 28 - 39] = - 12 wl 4 /384

∴          y          =- (12/384 ) (wl 4/  EI)

Deflection at D, (x = 3l/4)

EI yD  =- (w/24) (3l/4)4+  (w/24) [(3l/4)-(l/2)]4  + (7 w l3  /48)( 3l/4)- (39 wl 4/384)

= wl 4/24 × 256 [- 18 + 1 + 21 × 32 - 39 × 16]

= - 32 wl4 /(24 × 256) = -   (2/384 )wl 4

yD  = (wl 4 /192)     (w l 4/  EI)

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd