Integral Fundamental Theorem Assignment Help

Assignment Help: >> Calculus - Integral Fundamental Theorem

Integral Fundamental Theorem:

If ƒ(x) is continuous in [a, b] and if F(x) is an integral of ƒ(x), then
484_Integral Fundamental Theorem.png


Proof: Let the interval [a, b] be divided into n similar parts, each of length h, by means of the points

a, a + h, a + 2h, ...., a + (n - 1) h, a + nh = b.

Since F(x) is an integral of ƒ(x),

F'(x) = ƒ(x)     V x ->[a, b]

269_Integral Fundamental Theorem1.png

1278_Integral Fundamental Theorem2.png 
replacing x = a, a + h, a + 2h, ...., a + (n - 1) h respectively in (1), we get

F (a + h) - F (a) = hƒ(a) + h ε1,

F (a + 2h) - F(a + h) = hƒ(a + h) + h ε2,

F (a + 3h) - F(a + 2h) = hƒ(a + 2h) + h ε3,

F (a + nh) - F [a + (n - 1) h] = hƒ [a + (n - 1) h] + h εn


Adding these relations, we obtain

F (b) - F (a) = h[ƒ(a) + ƒ(a + h) + .... + ƒ (a + (n - 1) h)] + h (ε1 + ε2 + ... + εn) (? a + nh = b)                   (1)

Let εk (1 ≤ k ≤ n) be such that i| ≤ |εk| ;  i = 1, 2, .... , n.

h (ε1 + ε2 + ... + εn) ≤ hn |εk| = (b - a) |εk|   (? a + nh = b) 

since εk ->0 as h->0, it follows that


h |ε1 + ε2 + ... + εn| ->0as .

Thus on taking the limit as n->∞ in (1), we get

F (b) - F (a) =475_Integral Fundamental Theorem3.png [ƒ(a) + ƒ(a + h) + .... + ƒ{a + (n + 1) h}].

1359_Integral Fundamental Theorem4.png 
Remark: the relation (2) can be shown as
1313_Integral Fundamental Theorem5.png

= lim h [ƒ(a + h) + ƒ(a + 2h) + .... + ƒ(a + nh)]

where h->0 ,n->0 and nh = b - a.

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd