Zeroes - roots of polynomials, Algebra

Assignment Help:

We'll begin this section by defining just what a root or zero of a polynomial is.  We say that x = r is a root or zero of a polynomial, P ( x) , if P ( r )= 0 .  In other terms x= r is a root or zero of a polynomial if it is a solution to the equation P ( x)= 0 .

In the next couple of sections we will have to find all the zeroes for a given polynomial.  thus, before we get into that we eh to get some ideas out of the way about zeroes of polynomials that will help us in that procedure.

The procedure of finding the zeros of P ( x ) really amount to nothing more than solving out the equation P ( x )= 0 and already we know how to do that for second degree (quadratic) polynomials.  Hence, to help illustrate some of the ideas were going to be looking at let's get the zeroes of a couple of second degree polynomials.

Let's first determine the zeroes for P ( x)=x2+ 2x -15 .  To do this simply we solve out the following equation.

x2+ 2 x -15 =( x + 5)(x - 3)= 0  ⇒  x = -5, x = 3

Thus, this second degree polynomial has two zeroes or roots.

Now, let's determine the zeroes for P ( x)= x2 -14 x + 49 . 

That will mean solving,

x2 -14x + 49 =( x - 7 )2= 0  ⇒  x = 7

Hence, this second degree polynomial contains a single zero or root. Also, remember that while we first looked at these we called a root like this a double root.

We solved out each of these by first factoring the polynomial and then by using the zero factor property onto the factored form.  While we first looked at the zero factor property we saw that it said that if the product of any two terms was zero then one of the terms had to be zero to begin with.

The zero factor property can be extended to as several terms as we need.  In other terms, if we've got a product of n terms i.e. equal to zero, then at least one of them had to be zero to start off with.  Thus, if we could factor higher degree polynomials then we could solve these as well.


Related Discussions:- Zeroes - roots of polynomials

Equations reducible to quadratic form, In this section we are going to look...

In this section we are going to look at equations which are called quadratic in form or reducible to quadratic in form . What it means is that we will be looking at equations th

FACTORING, HOW TO FACTOR THE GIVEN

HOW TO FACTOR THE GIVEN

Integers, 25 equations that equall 36

25 equations that equall 36

Basic fact, What is a Math Basic Fact?

What is a Math Basic Fact?

Alternative assessment and math journal, ron the realtor is offered a job d...

ron the realtor is offered a job directly out of real-estate school. he has a choice as to which way he will receive his salary the first year. salary plan 1: he would receive a

#tibobb, a painter charged $320 to paint two walls taht measure 12 feet by ...

a painter charged $320 to paint two walls taht measure 12 feet by 9ft and two walls that measured 10 ft by 9 ft. The client asks him to return to paint two walls that measue 15 ft

Applications of logarithmic equation, In this last section of this chapter ...

In this last section of this chapter we have to look at some applications of exponential & logarithm functions. Compound Interest This first application is compounding inte

Equations, if a-b equals 73 what is a

if a-b equals 73 what is a

Inverse functions, In previous section we looked at the two functions  f ( ...

In previous section we looked at the two functions  f ( x) = 3x - 2 and g ( x )= x/3 + 2/3 and saw that                                          ( f o g ) ( x ) =(g o f )( x ) =

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd