Zeroes - roots of polynomials, Algebra

Assignment Help:

We'll begin this section by defining just what a root or zero of a polynomial is.  We say that x = r is a root or zero of a polynomial, P ( x) , if P ( r )= 0 .  In other terms x= r is a root or zero of a polynomial if it is a solution to the equation P ( x)= 0 .

In the next couple of sections we will have to find all the zeroes for a given polynomial.  thus, before we get into that we eh to get some ideas out of the way about zeroes of polynomials that will help us in that procedure.

The procedure of finding the zeros of P ( x ) really amount to nothing more than solving out the equation P ( x )= 0 and already we know how to do that for second degree (quadratic) polynomials.  Hence, to help illustrate some of the ideas were going to be looking at let's get the zeroes of a couple of second degree polynomials.

Let's first determine the zeroes for P ( x)=x2+ 2x -15 .  To do this simply we solve out the following equation.

x2+ 2 x -15 =( x + 5)(x - 3)= 0  ⇒  x = -5, x = 3

Thus, this second degree polynomial has two zeroes or roots.

Now, let's determine the zeroes for P ( x)= x2 -14 x + 49 . 

That will mean solving,

x2 -14x + 49 =( x - 7 )2= 0  ⇒  x = 7

Hence, this second degree polynomial contains a single zero or root. Also, remember that while we first looked at these we called a root like this a double root.

We solved out each of these by first factoring the polynomial and then by using the zero factor property onto the factored form.  While we first looked at the zero factor property we saw that it said that if the product of any two terms was zero then one of the terms had to be zero to begin with.

The zero factor property can be extended to as several terms as we need.  In other terms, if we've got a product of n terms i.e. equal to zero, then at least one of them had to be zero to start off with.  Thus, if we could factor higher degree polynomials then we could solve these as well.


Related Discussions:- Zeroes - roots of polynomials

Assignment 2: Financial Project, ue Week 7 and worth 55 points Five (5) ye...

ue Week 7 and worth 55 points Five (5) years ago, you bought a house for $171,000, with a down payment of $30,000, which meant you took out a loan for $141,000. Your interest rate

Siquences, arithmetic , geometric , or niether ? 486 , 162, 54 , 18 , 6

arithmetic , geometric , or niether ? 486 , 162, 54 , 18 , 6

College algebra 158, how to master college algebra and pass with an "A"

how to master college algebra and pass with an "A"

Scientific notation, The average U.S. citizen consumes about 2.5 × 102 L of...

The average U.S. citizen consumes about 2.5 × 102 L of water per day for various uses. In 2013, there were about 3.16 × 108 U.S. citizens. About how many kiloliters of water were c

Solve equation using absolute value inequalities, Solve following.      ...

Solve following.                 |3x + 2| Solution Now we know that p ≥ 0 and thus can't ever be less than zero. Hence, in this case there is no solution as it is impos

Direct variation, is force applied to the brakes on a car, and stopping dis...

is force applied to the brakes on a car, and stopping distance a direct variation?

Example of double inequalities, Now, let's solve out some double inequaliti...

Now, let's solve out some double inequalities. The procedure here is alike in some ways to solving single inequalities and still very different in other ways. As there are two ineq

Math, how do i do the fundamental counting principe

how do i do the fundamental counting principe

Quadratic equation, If a firm sellings its product at a price $p per unit, ...

If a firm sellings its product at a price $p per unit, customers would buy q units per day where q = 1,350 - p. The cost of producing q units per day is $C(q) where C(q) = 50q + 36

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd