Zero-inflated poisson regression, Advanced Statistics

Assignment Help:

Zero-inflated Poisson regression is  the model for count data with the excess zeros. It supposes that with probability p the only possible observation is 0 and with the probability 1 p a random variable with the Poisson distribution is observed. For instance, when manufacturing equipment is properly aligned, defects might be almost impossible. But when it is misaligned, defects might happen according to a Poisson distribution. Both probability p of the perfect zero defect state and the mean number of defects λ in the imperfect state might depend on covariates. The parameters in this type of models can be estimated using maximum likelihood estimation.


Related Discussions:- Zero-inflated poisson regression

Homoscedasticity - reasons for screening data, Homoscedasticity - Reasons f...

Homoscedasticity - Reasons for Screening Data Homoscedasticity is the assumption that the variability in scores for a continuous variable is roughly the same at all values of

What is harris and stevens forecasting, Harris and Stevens forecasting is ...

Harris and Stevens forecasting is the method of making short term forecasts in the time series which is subject to abrupt changes in pattern and the transient effects. Instances o

Factor, The term used in a variety of methods in statistics, but mostly to ...

The term used in a variety of methods in statistics, but mostly to refer to the categorical variable, with a less number of levels, under examination in an experiment as a possible

Network sampling, Network sampling is a sampling design in which the simpl...

Network sampling is a sampling design in which the simple random sample or strati?ed sample of the sampling units is made and all observational units which are linked to any of th

Autocorrelation, This graph for Cross Correlation Function for RES1, RES1 s...

This graph for Cross Correlation Function for RES1, RES1 shows that there is possibly negative autocorrelation as there are alternating spikes; also the first spike is negative whi

Dirichlet process mixture models, The nonparametric Bayesian inference appr...

The nonparametric Bayesian inference approach to using the finite mixture distributions for modelling data suspected of the containing distinct groups of observations; this approac

Product-limit estimator, Product-limit estimator is a method for estimatin...

Product-limit estimator is a method for estimating the survival functions for the set of survival times, some of which might be censored observations. The logic behind the procedu

Intention-to-treat analysis, Intention-to-treat analysis is the process in...

Intention-to-treat analysis is the process in which all the patients randomly allocated to a treatment in the clinical trial are analyzed together as representing that particular

Weighted least squares, Weighted least squares  is the method of estimation...

Weighted least squares  is the method of estimation in which the estimates arise from minimizing the weighted sum of squares of the differences between response variable and its pr

Balanced incomplete block design, Balanced incomplete block design : A desi...

Balanced incomplete block design : A design in which all the treatments are not used in all blocks. Such designs have the below stated properties: * each block comprises the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd