Zero flag, Assembly Language

Assignment Help:

Zero flag:

The next line compares the value in register. A with the value 1. If they are equivalent, the Zero flag is set (to 1). The next line then jumps to start: only if the Zero flag is not set, i.e.: the value in reg. A is not 1 therefore the switch was not pressed. Therefore the program will keep looping until the switch is pressed.

If the switch is pressed then the penultimate line writes down the value 1 to the accumulator, thus bit 0 = 1, and the LED comes on.

The last line jumps back to start. It completes the loop of reading the switch and writing to the LED.

This specific problem could have been solved out with just a switch connected to an LED, as a light is linked to a wall switch in your house. But along with a microprocessor in the loop, much more could be done. We could have a clock that also turns on and off the LED depend on time. Or we could monitor the temperature and turn the LED on and off depend on what temperature it is. Or we could monitor various switches and turn the LED on and off depend on a combination of switches, etc. This is up to the imagination what may be controlled.

In the above instance we supposed that the other bits of ports 0 and 1 were all zeros. But in realism, each bit could have a function assigned to them. Then we would have to look only at bit 0 in port 0 and bit 0 in port 1. It further complicates the problem. Also, we suppose that port 0 was previously described as an input port whereas port 1 was defined as an output port.

In assembly we can assign a name to a port and refer to it by that name, rather than port 0 or port 1. It is done with an equate directive. Directives are assembler commands which don't result in program but instead instruct the assembler to some action. All of the directives start with a period.

.equ switch, 0  ;port 0 is now called switch

.equ LED,1       ;port 1 is now called LED

start :   IN         switch  ; read Port 0 into reg. A

CMP    1          ; compare reg. A with the value 1

JNZ      start     ; jump to start if the comparison does not yield 0

OUT     LED      ; send a 1 to Port 1, turning the LED on

JMP     start

It has the same result as the earlier program. Also equate only need to be made once at the start of the program, and thereafter the name or label is utilized instead of the port number. It makes things much simpler for the programmer. All equates should be defined before they are used in a program. It holds true for labels also. Another advantage of naming ports with equate is that if, later on in the design process, you decide to utilizes a different port for the LED or the switch, only the equate has to be changed, not the program itself.

Please note down that comments are extremely important. While you initially write a program, the tendency is not to write much in the comment field because you're in a hurry. But if you need to come back to it a few weeks later, it is much simple to understand what you've written if you've taken the time to write down good comments. Also good comments help out in debugging process.


Related Discussions:- Zero flag

Assume-assemblers directive-microprocessor, ASSUME: Assume Logical Segment...

ASSUME: Assume Logical Segment Name:- The ASSUME directive which is used to inform the assembler, the specified names of the logical segments to be consider for different segme

Memory segmentation-microprocessor, Memory Segmentation : The  memory ...

Memory Segmentation : The  memory in an 8086/8088  based system is organized as segmented memory. In this scheme, the whole physically available memory can be divided into a n

Lds/les instruction execution-microprocessor, LDS/LES Instruction execution...

LDS/LES Instruction execution :  LAHF : Load AH from Lower Byte of Flag: - This instruction loads the AH register with the lower byte of the flag register. This instruction ca

Multiplication, how we can multiply two 8 bit number with rotation

how we can multiply two 8 bit number with rotation

Write an assembly program to design an array, 1- Write an assembly program ...

1- Write an assembly program that:   a- Defines an array of 10 (word type)elements;   b- Finds out the number of negative elements   c- Calculate the summation of the posi

Name-offset-assemblers directive-microprocessor, NAME : Logical Name of...

NAME : Logical Name of a Module: The NAME directive which is used to assign a name to an assembly language program module. The modulecan now be mention to by its declared name.

Ocw-microprocessor, There are 3 kinds of OCWs. The command word OCWI is u...

There are 3 kinds of OCWs. The command word OCWI is utilized for masking the interrupt requests; when the mask bit corresponding to an interrupt request is value 1, then the requ

Write policy-microprocessor, Write Policy A write policy determines how...

Write Policy A write policy determines how the cache deals with a write cycle. The 2 common write policies areWrite-Throughand Write-Back. In Write-Back policy, the cache behav

Type of microprocessor , Type of Microprocessor : Microprocessors fal...

Type of Microprocessor : Microprocessors fall into 3 categories: Single Chip Microcomputers: - Contains RWM, ROM, microprocessor, I/O port, timer and clock. General pu

Interrupt system based on multiple 8259as-microprocessor, Interrupt System ...

Interrupt System Based on Multiple 8259As A multiple 8259A interrupt system is diagrammed in given figure in this figure data bus drivers are not indicated, but they could be i

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd