Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
In the earlier section we introduced the Wronskian to assist us find out whether two solutions were a fundamental set of solutions. Under this section we will look at the other application of the Wronskian and also an alternate method of computing the Wronskian.
Let's begin with the application. We require introducing a couple of new concepts first.
Specified two non-zero functions f(x) and g(x) write down the subsequent equation
c f ( x ) + k g ( x ) = 0
See that c = 0 and k = 0 will make (1) true for all x regardless of the functions which we use.
Here, if we can get non-zero constants c and k for that (1) will also be true for all x so we call the two functions linearly dependent. Conversely, if the only two constants for that (1) is true are c = 0 and k = 0 so we call the functions linearly independent.
1+1
In the previous section we looked at the method of undetermined coefficients for getting a particular solution to p (t) y′′ + q (t) y′ + r (t) y = g (t) .....................
3. How are Indian customers visiting Shoppers’ Stop any different from customers of developed western countries? 4. How should Shoppers’ Stop develop its demand forecasts?
I need expert who can solve 10 set of PDE with constant of integration.
A number of the form x + iy, where x and y are real and natural numbers and is called as a complex number. It is normally given by z. i.e. z = x + iy, x is called as the real part
Calculate the area and perimeter of a parallelogram: Calculate the area and perimeter of a parallelogram with base (b) = 4´, height (h) = 3´, a = 5´ and b = 4´. Be sure to in
#k1=f(Tn, Xn), k2=f (Tn + H.Y,Xn + H.Y.k1) Xn+1=Xn + H(a.k1+ b.k2) Find a relation between Y,a and b so that the method is second order consistent.
Need assignment help, Explain Multiplication of two Matrices.
Evaluate: 30 - 12÷3×2 =
4+15-(4-1/2)
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd