Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
In the earlier section we introduced the Wronskian to assist us find out whether two solutions were a fundamental set of solutions. Under this section we will look at the other application of the Wronskian and also an alternate method of computing the Wronskian.
Let's begin with the application. We require introducing a couple of new concepts first.
Specified two non-zero functions f(x) and g(x) write down the subsequent equation
c f ( x ) + k g ( x ) = 0
See that c = 0 and k = 0 will make (1) true for all x regardless of the functions which we use.
Here, if we can get non-zero constants c and k for that (1) will also be true for all x so we call the two functions linearly dependent. Conversely, if the only two constants for that (1) is true are c = 0 and k = 0 so we call the functions linearly independent.
An unbiased die is tossed twice .Find the probability of getting a 4,5,6 on the first toss and a 1,2,3,4 on the second toss
cot functions
The Addition Rule: Mutually Exclusive Events P(A or B or C) = P(A) + P(B) + P(C) This can be represented by the Venn diagram as follows:
how do you do fractions mixed numbers and how do you add and subtract fractions.
By using the above data compute the quartile coefficient of skewness Quartile coefficient of skewness = (Q3 + Q1 - 2Q2)/(Q3 + Q1) The positio
In this section we will be searching how to utilize Laplace transforms to solve differential equations. There are various types of transforms out there into the world. Laplace tran
1. Solve the given differential equation, subject to the initial conditions: . x2y''-3xy'+4y = 0 . y(1) = 5, y'(1) = 3 2. Find two linearly independent power series soluti
Illustration of Rank Correlation Coefficient In a beauty competition two assessors were asked to rank the 10 contestants by using the professional assessment skills. The resul
Prove that if x is a real number then [2x] = [x] + [x + ½ ] Ans: Let us consider x be any real number. It comprises two parts: integer and fraction. With no loss of
conclusion on share and dividend project
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd