Wronskian, Mathematics

Assignment Help:

In the earlier section we introduced the Wronskian to assist us find out whether two solutions were a fundamental set of solutions. Under this section we will look at the other application of the Wronskian and also an alternate method of computing the Wronskian.

Let's begin with the application. We require introducing a couple of new concepts first.

 Specified two non-zero functions f(x) and g(x) write down the subsequent equation

c f ( x ) + k g ( x ) = 0

See that c = 0 and k = 0 will make (1) true for all x regardless of the functions which we use.

Here, if we can get non-zero constants c and k for that (1) will also be true for all x so we call the two functions linearly dependent. Conversely, if the only two constants for that (1) is true are c = 0 and k = 0 so we call the functions linearly independent.


Related Discussions:- Wronskian

Determine the derivative f ( x ) = 2 x2 -16x + 35, Determine the derivative...

Determine the derivative of the following function by using the definition of the derivative. f ( x ) = 2 x 2 -16x + 35 Solution Thus, all we actually have to do is to pl

Algebra, how do i sole linear epuation

how do i sole linear epuation

Integration, sketch the curve y=9-x2 stating the coordinates of the turning...

sketch the curve y=9-x2 stating the coordinates of the turning point and of the intersections with the axes.

Illustration of simpson rule, By using n = 4 and all three rules to approxi...

By using n = 4 and all three rules to approximate the value of the following integral. Solution Very firstly, for reference purposes, Maple provides the following valu

Devision, how many times can u put 10000 into 999999

how many times can u put 10000 into 999999

Factoring polynomials with higher degree, Factoring Polynomials with Degree...

Factoring Polynomials with Degree Greater than 2 There is no one method for doing these generally.  However, there are some that we can do so let's take a look at a some exa

Geometry of arcs, how to divide an arc in three equal parts

how to divide an arc in three equal parts

Differentials, Differentials : In this section we will introduce a nota...

Differentials : In this section we will introduce a notation. We will also look at an application of this new notation. Given a function y = f ( x ) we call dy & dx differen

Arc length - applications of integrals, Arc Length - Applications of integr...

Arc Length - Applications of integrals In this part we are going to look at determining the arc length of a function.  As it's sufficiently easy to derive the formulas that we'

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd