Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
A function is an equation for which any x which can be plugged into the equation will yield accurately one y out of the equation.
There it is. i.e. the definition of functions which we're going to employ and will probably be easier to decipher just what it means.
Before we study this a little more note that we utilized the phrase "x which can be plugged into" in the definition. It tends to imply that not all x's can be plugged in an equation & it is actually correct. We will come back & discuss it in more detail towards the end of this section, though at this point just remember that we can't divide by zero & if we desire real numbers out of the equation we can't take the square root of a -ve number. Thus, with these two instances it is clear that we will not always be capable to plug in every x into any equation.
Further, while dealing along with functions we are always going to suppose that both x and y will be real numbers. In other terms, we are going to forget that we know anything regarding complex numbers for a little bit whereas we deal with this section.
Okay, with that out of the way let's get back to the definition of a function & let's look at some instance of equations which are functions & equations that aren't functions.
Q. Illustrate Exponential Distribution? Ans. These are two examples of events that have an exponential distribution: The length of time you wait at a bus stop for the n
The two sides of a triangle are 17 cm and 28 cm long, and the length of the median drawn to the third side is equal to 19.5 cm. Find the distance from an endpoint of this median to
how to solve the equation of an inverse function
how to do mathematical proofs
a. Random or probability sampling methods they involve: Simple random sampling Systematic sampling Stratified sampling Multi stage sampling b.
define even and odd function state whether given function are even odd or neither 1 f x =sin x cos x 2 f x {x}=x +x3n #Minimum 100 words accepted#
What lines are invariant under the transformation [(103)(01-4)(001)]? I do not know where to even begin to solve this. Please help!!
y=f(a^x) and f(sinx)=lnx find dy/dx Solution) dy/dx = (a^x)(lnx)f''(a^x), .........(1) but f(sinx) = lnx implies f(x) = ln(arcsinx) hence f''(x) = (1/arcsinx) (1/ ( ( 1-x
nc6:n-3c3=91:4
A population forms a normal distribution with a mean of μ=80 and a standard deviation of o=15. For every samples, compute the z-score for the sample mean and determine whether the
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd