Word problems based on formulation of linear programming, Operation Research

Assignment Help:

Word problems based on formulation of linear programming problems.

2.   A manufacturer produces nuts and bolts for industrial machinery. It takes 1 hour of work on machine 1 and 3 hours of work on machine 2 to produce a package of nuts. It takes 3 hours on machine 1 and 1 hour on machine 2 to produce a package of bolts. He earns a profit of Rs. 2.50 per package on nuts and Rs. 1 per package on bolts. Form a LPP to maximize his profit, if he operates each machine for almost 12 hours.

script

solution

Let x packages of nuts and y packages of bolts be produced. The objective of the manufacturer to maximize the profit is

Total Time required on machine 1 to produce x packages of nuts and y packages of bolts is equal to

 

Total Time required on the machine 2 to produce x packages of nuts and y packages of bolts is equal to

 s

According to restrictions,

For machine 1

For machine 2

 

Maximize z is equal to

 

Subject to constraints

 

 

To solve this graphically, let us take

The lines are drawn using suitable points on the graph.

The lines intersect at P(3,3)

Now shade the region of intersection of the lines.

The feasible region is OAPB

For the corner point O(0,0), z=

For the corner point A(4,0)

For the corner point P(3,3,)

For the corner point B(0,4)

Clearly z is maximum at x=3 , y=3 and the maximum value is 10.50

 

 

 

 

2.50x + 1y

 

 

1x + 3y

 

 

3x + 1y

 

 

 

 

 

X + 3y ≤ 12

3x + y ≤ 12 and x,y≥0

 

2.50x + y

 

X + 3y ≤ 12

3x + y ≤ 12

X ≥ 0, y ≥ 0

X + 3y =12

3x + y = 12, x=0, y=0

 

 

 

 

 

O(0,0),A(4,0),P(3,3,),B(0,4)

2.5(0) +1(0)=0

2.5(4)+1(0)=10

2.5(3)+1(3)=10.5

2.5(0)+1(4)=4

3.   A shopkeeper deals in 2 items → wall hangings and artificial plants. He had a space to store 80 pieces and Rs. 15000 to invest. A wall hangings cost him Rs. 300 and artificial plant Rs. 150. He can sell a wall hanging at a profit of Rs. 50 and artificial plant at a profit of Rs. 18. Assuming that he can sell all the items that he buys, formulate a LPP in order to maximize his profit.\

script

solution

Let x be the number of wall hangings and y be the number of artificial plants.

Profit of dealer is equal to

Objective function z is equal to

Since dealer invest atmost Rs. 15000

Therefore

Or

Also a dealer has space to store atmost 80 pieces.

Therefore,

 

Maximize z is equal to

Subject to constraints

 

 

 

To solve this graphically, we need to draw the graph

Let us the draw the lines 2x + y ≤100

X + y ≤ 80

X ≥ 0, y ≥ 0

On the graph by using suitable points.

The points of intersection are

Then shade the region of intersection of these two lines

The feasible points are OABC

Now to obtain the maximum value;

For The corner point O(0,0), z=

For the corner point A(50,0)

For the corner point B(20,60)

For the corner point C(0,100)

Clearly we get the maximum value of 2500 at A.(50,0)

 

 

 

50x + 18y

50x + 18y

 

 

300x + 150y ≤ 15000

2x + y ≤ 100

 

 

X + y ≤ 80

X ≥ 0, y ≥ 0

Z = 50x + 18y

2x + y ≤100

X + y ≤ 80

X ≥ 0, y ≥ 0

 

 

 

 

 

 

 

 

 

(20,60)

 

 

O(0,0),A(50,0),B(20,60),(C(0,100)

 

 

 

50(0)+18(0)=0

 

50(50)+18(0)=2500

50(20)+18(60)=2080

50(0)+18(100)=1800


Related Discussions:- Word problems based on formulation of linear programming

Case Analysis, Ask question #Minimum 100 woRead this article and then write...

Ask question #Minimum 100 woRead this article and then write a three-page summary of the application (problem definition, objective function constraints, decision variables, etc.)

Important of probability - probability distributioin , Important of Probabi...

Important of Probability The  various practical applications  of the  theory  of probability are: a.The fundamental  laws of statistic viz   the law  of statistical regular

What do you understand by the term queueing theory, Question: (a) (i) W...

Question: (a) (i) What do you understand by the term ‘queueing theory'? Give two real life examples to illustrate your answer. (ii) Outline the five components involved in

One, Edwards Life Sciences is trying to decide if it should sell a new type...

Edwards Life Sciences is trying to decide if it should sell a new type of medical product. Fixed costs associated to the production of the product are estimated to be $30,000. Th

Scope, write the scope of operation research

write the scope of operation research

Big M method, Maximize p = (3)x + 2y subject to 2x + y 3x + 4y >= 12

Maximize p = (3)x + 2y subject to 2x + y 3x + 4y >= 12

Transpotation problem, a manufacture wants to ship 8 loads of his product a...

a manufacture wants to ship 8 loads of his product as shown below. The matrix gives the mileage from origin to the destination D. Origin Destination Available A B C X 50 30 220

Operations research 2, management wants to know how many supervisors should...

management wants to know how many supervisors should be hired, and what could be the optimum workload distribution to be applied, given a number of constraints

Effect of professional development on class management, Purpose: The pu...

Purpose: The purpose of this study is to explore the effect of professional development on teachers' Lesson Planning, Class Management, Teaching Methods, Cooperation and Teac

MB0048, A PAPER MILL PRODUCES TWO GRADES OF PAPER VIZ., X AND Y. BECAUSE OF...

A PAPER MILL PRODUCES TWO GRADES OF PAPER VIZ., X AND Y. BECAUSE OF RAW MATERIAL RESTRICTIONS, IT CANNOT PRODUCE MORE THAN 400 TONS OF GRADE X PAPER AND 300 TONS OF GRADE Y PAPER I

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd