Why x and y are simplifying expressions, Mathematics

Assignment Help:

Why x and y are Simplifying Expressions?

You're doing algebra now, and you know you're going to see x's and y's. But before we work with x's and y's, we'll explore why we use them.

Let's look at this problem. Tony bought two items at a store. He checks the sales receipt and finds that the cost of one of the items is blurred. He sees he spent $12 in total, and one item costs $7. How much does the other item cost?

He thinks: 7 + x= 12

He tries different numbers. He rejects the numbers that don't work until he eventually finds one that does.

7 + 1 = 8 ≠12
7 + 2 = 9 ≠12
...
7 + 5 = 12

Trying different numbers until you find one that works is one way to solve this problem.

However, what if the total were $111.89
and one item cost $61.42: 61.42 +x = 111.89
or there were more than two items, for example: 4.99 + 9.53 + x= 18.47
or there were 2 of the same item, for example: 6.69 + 2 = 12.89

In these cases, and in most real-life situations, it would be impractical to try to work through a long string of possibilities until the right one is found. Algebra provides a quick, systematic way to find a solution to problems like these (and many others).

In the equation 7 + = 12, the serves as a placeholder for a number. Its value is variable. The number 5 makes the equation true; other numbers make it false.

The equation 7 + x = 12 says exactly the same thing. Here, x is the placeholder for the different values that can be used in the equation. When x = 5, the equation is true. We could have used other symbols as well: 7 + y = 12, 7 + ? = 12, etc.
For the purpose of holding a place for a number in an equation, letters do seem to work better than other symbols. By convention, we use x, y, z, most often, but any letter can serve as a placeholder or variable. In algebra, you will be asked to solve an equation, which means finding the value or values of a variable that make an equation true.

The equation y + z = 9 is a another type of algebraic statement. When two or more letters appear, they each serve as a placeholder for a different number. Notice that there are many values for y and for z that make this equation true.

For example: y = 0 and z = 9, y = 1, z = 8, etc.

Different letters in an algebraic expression can take on different values. The same letter has the same value no matter how many times it appears in an algebraic expression.

You might think of letters, or variables, as numbers in disguise. Whatever is true for numbers is true for letters (variables). Use all the Operations of Arithmetic, Adding, Subtracting, etc., for letters as you would for numbers. So, the following would be true.

x + x = 2x, which we write as x + x = 2x
7y - 3y = 4y
4z/4 =z
3x + 4y - 2x = 4y + x


Related Discussions:- Why x and y are simplifying expressions

Complementary addition-word problems related to subtraction, Complementary ...

Complementary addition -what number how many things should be added to one number or group to get the other. (e.g., a classroom can seat 50 children, and 20 children are already s

Differential equation, Suppose a fluid (say, water) occupies a domain D? R^...

Suppose a fluid (say, water) occupies a domain D? R^(3 ) and has velocity field V=V(x, t). A substance (say, a day) is suspended into the fluid and will be transported by the fluid

Tangent, Tangent, Normal and Binormal Vectors In this part we want to ...

Tangent, Normal and Binormal Vectors In this part we want to look at an application of derivatives for vector functions.  In fact, there are a couple of applications, but they

Union of sets, Union of Sets Venn diagram presenting the union of sets...

Union of Sets Venn diagram presenting the union of sets A and B or A?B = Shaded area is demonstrated below: A ?B = Shaded area

Parametric equations and polar coordinates, Parametric Equations and Polar ...

Parametric Equations and Polar Coordinates In this part we come across at parametric equations and polar coordinates. When the two subjects don't come out to have that much in

Pi, is that rational or irrational number

is that rational or irrational number

Probability, what is a sample space diagram

what is a sample space diagram

Hundreths., round to the nearest hundreths 1677.76

round to the nearest hundreths 1677.76

Define an ordered rooted tree, Define an ordered rooted tree. Cite any two ...

Define an ordered rooted tree. Cite any two applications of the tree structure, also illustrate using an example each the purpose of the usage.   Ans: A  tree is a graph like t

Surds and logarithms, what are these all about and could i have some exampl...

what are these all about and could i have some examples of them please

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd