Why x and y are simplifying expressions, Mathematics

Assignment Help:

Why x and y are Simplifying Expressions?

You're doing algebra now, and you know you're going to see x's and y's. But before we work with x's and y's, we'll explore why we use them.

Let's look at this problem. Tony bought two items at a store. He checks the sales receipt and finds that the cost of one of the items is blurred. He sees he spent $12 in total, and one item costs $7. How much does the other item cost?

He thinks: 7 + x= 12

He tries different numbers. He rejects the numbers that don't work until he eventually finds one that does.

7 + 1 = 8 ≠12
7 + 2 = 9 ≠12
...
7 + 5 = 12

Trying different numbers until you find one that works is one way to solve this problem.

However, what if the total were $111.89
and one item cost $61.42: 61.42 +x = 111.89
or there were more than two items, for example: 4.99 + 9.53 + x= 18.47
or there were 2 of the same item, for example: 6.69 + 2 = 12.89

In these cases, and in most real-life situations, it would be impractical to try to work through a long string of possibilities until the right one is found. Algebra provides a quick, systematic way to find a solution to problems like these (and many others).

In the equation 7 + = 12, the serves as a placeholder for a number. Its value is variable. The number 5 makes the equation true; other numbers make it false.

The equation 7 + x = 12 says exactly the same thing. Here, x is the placeholder for the different values that can be used in the equation. When x = 5, the equation is true. We could have used other symbols as well: 7 + y = 12, 7 + ? = 12, etc.
For the purpose of holding a place for a number in an equation, letters do seem to work better than other symbols. By convention, we use x, y, z, most often, but any letter can serve as a placeholder or variable. In algebra, you will be asked to solve an equation, which means finding the value or values of a variable that make an equation true.

The equation y + z = 9 is a another type of algebraic statement. When two or more letters appear, they each serve as a placeholder for a different number. Notice that there are many values for y and for z that make this equation true.

For example: y = 0 and z = 9, y = 1, z = 8, etc.

Different letters in an algebraic expression can take on different values. The same letter has the same value no matter how many times it appears in an algebraic expression.

You might think of letters, or variables, as numbers in disguise. Whatever is true for numbers is true for letters (variables). Use all the Operations of Arithmetic, Adding, Subtracting, etc., for letters as you would for numbers. So, the following would be true.

x + x = 2x, which we write as x + x = 2x
7y - 3y = 4y
4z/4 =z
3x + 4y - 2x = 4y + x


Related Discussions:- Why x and y are simplifying expressions

Applications of integrals, Applications of Integrals In this part we're...

Applications of Integrals In this part we're going to come across at some of the applications of integration.  It should be noted also that these kinds of applications are illu

What is probability that a person selected at random eyes, If 65% of the po...

If 65% of the populations have black eyes, 25% have brown eyes and the remaining have blue eyes. What is the probability that a person selected at random has (i) Blue eyes (ii) Bro

Measurement story problem, Seth has a pet goldfish. When he got his goldfis...

Seth has a pet goldfish. When he got his goldfish , it was only 5 centimeters long . Now it has grown to be 92 millimeters long. How many millimeters has the goldfish grown since

Function, definition and examples and types

definition and examples and types

Multiplication of two like terms with opposite signs, The product of -7ab a...

The product of -7ab and +3ab is (-7 x 3) a 2  b 2  = -21a 2  b 2 . In other words, a term with minus sign when multiplied with a term having a positive sign, gives a product having

integral 0 to pi e^cosx cos (sinx) dx, Let u = sin(x). Then du = cos(x) dx...

Let u = sin(x). Then du = cos(x) dx. So you can now antidifferentiate e^u du. This is e^u + C = e^sin(x) + C.  Then substitute your range 0 to pi. e^sin (pi)-e^sin(0) =0-0 =0

Vector analysis ...gradient, A body is constrained to move in a path y = 1+...

A body is constrained to move in a path y = 1+ x^2 and its motion is resisted by friction. The co-efficient of friction is 0.3. The body is acted on by a force F directed towards t

Index numbers, advantages and disadvantages of index numbers

advantages and disadvantages of index numbers

Proportions, bananas are on sale for 3 pounds for $2. At that price how man...

bananas are on sale for 3 pounds for $2. At that price how many pounds can you buy for $22

Quantitative Techniques, The following table given the these scores and sal...

The following table given the these scores and sales be nine salesman during last one year in a certain firm: text scores sales (in 000''rupees) 14 31 19

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd