White''s general heteroscedasticity test, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0:  γ1 = γ2 = ...  =  0  i.e.  there is no heteroscedasticity in the model

The Alternative Hypothesis - H1:  at least one of the γi's are not equal to zero i.e. the squared residuals are related to one of the independent variables.

Reject H0 if nR2   >   2094_Tests for Heteroscedasticity.png

Regression Analysis: sqresi versus totexp, age, ...

* sqnk is highly correlated with other X variables

* sqnk has been removed from the equation.

 

The regression equation is

sqresi = 0.00086 - 0.000117 totexp + 0.000765 age + 0.00007 nk

         + 0.000000 sqtotexp - 0.000009 sqage + 0.000000 totexpage

         + 0.000026 totexpnk - 0.000077 agenk

 

Predictor         Coef     SE Coef      T      P     VIF

Constant      0.000857    0.007288   0.12  0.906

totexp     -0.00011676  0.00004906  -2.38  0.017  49.148

age          0.0007649   0.0003256   2.35  0.019  73.466

nk            0.000072    0.002941   0.02  0.980  24.250

sqtotexp    0.00000019  0.00000010   2.00  0.045  13.958

sqage      -0.00000879  0.00000394  -2.23  0.026  62.515

totexpage   0.00000021  0.00000097   0.21  0.831  37.830

totexpnk    0.00002598  0.00001464   1.77  0.076  18.920

agenk      -0.00007694  0.00007905  -0.97  0.331  32.566

S = 0.0112807   R-Sq = 1.2%   R-Sq(adj) = 0.6%

 

Analysis of Variance

Source            DF         SS         MS     F      P

Regression         8  0.0022313  0.0002789  2.19  0.026

Residual Error  1493  0.1899897  0.0001273

  Lack of Fit    639  0.0804237  0.0001259  0.98  0.601

  Pure Error     854  0.1095659  0.0001283

Total           1501  0.1922209

 

 332 rows with no replicates

Source     DF     Seq SS

totexp      1  0.0006642

age         1  0.0000000

nk          1  0.0000026

sqtotexp    1  0.0005240

sqage       1  0.0005895

totexpage   1  0.0000013

totexpnk    1  0.0003292

agenk       1  0.0001206

 

MTB > let k4=1502*0.012

MTB > print k4

Data Display

K4    18.0240

Inverse Cumulative Distribution Function

Chi-Square with 8 DF

P( X <= x )        x

       0.95  15.5073

Since nrsq = (1502*0.012) 18.024 > 15.5073 = 2094_Tests for Heteroscedasticity.png, there is sufficient evidence to reject H0 which suggests that there is heteroscedasticity in the model from White's general heteroscedasticity test at the 5% significance level.  Both Breusch Pagan test and White's general heteroscedasticity test seem to indicate that totexp is the culprit as the T value is significant and the P-value is 0.000.


Related Discussions:- White''s general heteroscedasticity test

Non central distributions, Non central distributions is the series of prob...

Non central distributions is the series of probability distributions each of which is the adaptation of one of the standard sampling distributions like the chi-squared distributio

Omitted covariates, Omitted covariates is a term generally found in the co...

Omitted covariates is a term generally found in the connection with regression modelling, where the model has been incompletely specified by not including significant covariates.

Multidimensional scaling (mds), Multidimensional scaling (MDS)  is a generi...

Multidimensional scaling (MDS)  is a generic term for a class of techniques or methods which attempt to construct a low-dimensional geometrical representation of the proximity matr

Expected frequencies, A term commonly encountered in the analysis of the co...

A term commonly encountered in the analysis of the contingency tables. Such type of frequencies are the estimates of the values to be expected under hypothesis of interest. In a tw

Mareg, MAREG is the software package for the analysis of the marginal regr...

MAREG is the software package for the analysis of the marginal regression models. The package permits the application of generalized estimating equations and the maximum likelihoo

Mauchly test, Mauchly test is a test which a variance-covariance matrix of...

Mauchly test is a test which a variance-covariance matrix of pair wise differences of responses in the set of longitudinal data is the scalar multiple of identity matrix, a proper

Population averaged models, Population averaged models are the models for ...

Population averaged models are the models for kind of clustered data in which the marginal expectation of response variable is the main focus of interest. An alternative approach

Latin square, Latin square  is an experimental design targeted at removing ...

Latin square  is an experimental design targeted at removing from the experimental error the variation from two extraneous sources so that a more sensitive test of the treatment ef

Coincidences, Coincidences : Astonishing concurrence of the events, perceiv...

Coincidences : Astonishing concurrence of the events, perceived as meaningfully related, with no apparent causal connection. Such type of events abounds in everyday life and is oft

SCATTER DIAGRAM, MEANING ,IMPORTANCE AND RELEAVANCE OF SCATTER DIAGRAM

MEANING ,IMPORTANCE AND RELEAVANCE OF SCATTER DIAGRAM

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd