White''s general heteroscedasticity test, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0:  γ1 = γ2 = ...  =  0  i.e.  there is no heteroscedasticity in the model

The Alternative Hypothesis - H1:  at least one of the γi's are not equal to zero i.e. the squared residuals are related to one of the independent variables.

Reject H0 if nR2   >   2094_Tests for Heteroscedasticity.png

Regression Analysis: sqresi versus totexp, age, ...

* sqnk is highly correlated with other X variables

* sqnk has been removed from the equation.

 

The regression equation is

sqresi = 0.00086 - 0.000117 totexp + 0.000765 age + 0.00007 nk

         + 0.000000 sqtotexp - 0.000009 sqage + 0.000000 totexpage

         + 0.000026 totexpnk - 0.000077 agenk

 

Predictor         Coef     SE Coef      T      P     VIF

Constant      0.000857    0.007288   0.12  0.906

totexp     -0.00011676  0.00004906  -2.38  0.017  49.148

age          0.0007649   0.0003256   2.35  0.019  73.466

nk            0.000072    0.002941   0.02  0.980  24.250

sqtotexp    0.00000019  0.00000010   2.00  0.045  13.958

sqage      -0.00000879  0.00000394  -2.23  0.026  62.515

totexpage   0.00000021  0.00000097   0.21  0.831  37.830

totexpnk    0.00002598  0.00001464   1.77  0.076  18.920

agenk      -0.00007694  0.00007905  -0.97  0.331  32.566

S = 0.0112807   R-Sq = 1.2%   R-Sq(adj) = 0.6%

 

Analysis of Variance

Source            DF         SS         MS     F      P

Regression         8  0.0022313  0.0002789  2.19  0.026

Residual Error  1493  0.1899897  0.0001273

  Lack of Fit    639  0.0804237  0.0001259  0.98  0.601

  Pure Error     854  0.1095659  0.0001283

Total           1501  0.1922209

 

 332 rows with no replicates

Source     DF     Seq SS

totexp      1  0.0006642

age         1  0.0000000

nk          1  0.0000026

sqtotexp    1  0.0005240

sqage       1  0.0005895

totexpage   1  0.0000013

totexpnk    1  0.0003292

agenk       1  0.0001206

 

MTB > let k4=1502*0.012

MTB > print k4

Data Display

K4    18.0240

Inverse Cumulative Distribution Function

Chi-Square with 8 DF

P( X <= x )        x

       0.95  15.5073

Since nrsq = (1502*0.012) 18.024 > 15.5073 = 2094_Tests for Heteroscedasticity.png, there is sufficient evidence to reject H0 which suggests that there is heteroscedasticity in the model from White's general heteroscedasticity test at the 5% significance level.  Both Breusch Pagan test and White's general heteroscedasticity test seem to indicate that totexp is the culprit as the T value is significant and the P-value is 0.000.


Related Discussions:- White''s general heteroscedasticity test

Regression analysis, The regression analysis is used to fit a model descr...

The regression analysis is used to fit a model describing the relationship of a dependent variable with independent variable(s). Here we have fitted three regression models:

Explain missing values, Missing values : The observations missing from the ...

Missing values : The observations missing from the set of data for some of the reason. In longitudinal studies, for instance, they might occur because subjects drop out of the stud

Window variables, Window variables are the variables measured during the c...

Window variables are the variables measured during the constrained interval of an observation period which is accepted as the proxies for the information over the whole period. Fo

Dropout, A subject who withdraws from the study for whatever reason, advers...

A subject who withdraws from the study for whatever reason, adverse side effects, noncompliance, moving away from the district, etc. In number of cases the reason may not be known.

Bootstrap, Bootstrap : The data-based simulation method/technique for the s...

Bootstrap : The data-based simulation method/technique for the statistical inference which can be used to study the variability of the estimated characteristics of the probability

Hazard regression, Hazard regression is the procedure for modeling the haz...

Hazard regression is the procedure for modeling the hazard function which does not depend on the suppositions made in Cox's proportional hazards model, namely that the log-hazard

Generalized method of moments (gmm), Generalized method of moments (gmm) is...

Generalized method of moments (gmm) is the estimation method popular in econometrics which generalizes the method of the moments estimator. Essentially same as what is known as the

Calculate cutoff values and analyzing histograms, 1. You are interested in ...

1. You are interested in investigating if being above or below the median income (medloinc) impacts ACT means (act94) for schools. Complete the necessary steps to examine univariat

Marginal matching, Marginal matching is the matching of the treatment grou...

Marginal matching is the matching of the treatment groups in terms of means or other summary characteristics of matching variables. This has been shown to be almost as efficient a

Probability., 5. Packages from a machine a normally distributed with a mean...

5. Packages from a machine a normally distributed with a mean 200g and its standard deviation 2grams. Find the probability that a package from the machine weighs a) Less than

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd