Whites general heteroscedasticity test, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0:  γ1 = γ2 = ...  =  0  i.e.  there is no heteroscedasticity in the model

The Alternative Hypothesis - H1:  at least one of the γi's are not equal to zero i.e. the squared residuals are related to one of the independent variables.

Reject H0 if nR2 > 1640_Tests for Heteroscedasticity.png

MTB > let c23 = c7*c7

MTB > let c24 = c8*c8

MTB > let c25 = c9*c9

MTB > let c26 = c10*c10

MTB > let c27 = c7*c8

MTB > let c28 = c7*c9

MTB > let c29 = c7*c10

MTB > let c30 = c8*c9

MTB > let c31 = c8*c10

MTB > let c32 = c9*c10

C7 = totexp

C8 = income

C9 = age

C10 = nk

C23 = sqtotexp

C24 = sqincome

C25 = sqage

C26 = sqnk

C27 = totexpincome

C28 = totexpage

C29 = totexpnk

C30 = incomeage

C31 = incomenk

C32 = agenk

Regression Analysis: sqres versus totexp, income, ...

* sqnk is highly correlated with other X variables

* sqnk has been removed from the equation.

The regression equation is

sqres = 0.0178 - 0.000232 totexp + 0.000023 income + 0.000298 age - 0.00555 nk

        + 0.000001 sqtotexp + 0.000000 sqincome - 0.000005 sqage

        - 0.000000 totexpincome + 0.000003 totexpage + 0.000015 totexpnk

        - 0.000001 incomeage + 0.000035 incomenk - 0.000021 agenk

 

Predictor            Coef     SE Coef      T      P

Constant         0.017804    0.007900   2.25  0.024

totexp        -0.00023207  0.00005370  -4.32  0.000

income         0.00002344  0.00003865   0.61  0.544

age             0.0002978   0.0003511   0.85  0.396

nk              -0.005551    0.003233  -1.72  0.086

sqtotexp       0.00000060  0.00000011   5.65  0.000

sqincome       0.00000004  0.00000002   1.79  0.074

sqage         -0.00000464  0.00000427  -1.09  0.277

totexpincome  -0.00000041  0.00000013  -3.27  0.001

totexpage      0.00000259  0.00000110   2.36  0.018

totexpnk       0.00001477  0.00001740   0.85  0.396

incomeage     -0.00000110  0.00000090  -1.22  0.223

incomenk       0.00003506  0.00001355   2.59  0.010

agenk         -0.00002146  0.00008647  -0.25  0.804

S = 0.0123952   R-Sq = 3.4%   R-Sq(adj) = 2.5%

Analysis of Variance

Source            DF         SS         MS     F      P

Regression        13  0.0080446  0.0006188  4.03  0.000

Residual Error  1505  0.2312304  0.0001536

Total           1518  0.2392750

 

Source        DF     Seq SS

totexp         1  0.0003007

income         1  0.0000070

age            1  0.0000053

nk             1  0.0000429

sqtotexp       1  0.0037616

sqincome       1  0.0000507

sqage          1  0.0001055

totexpincome   1  0.0010903

totexpage      1  0.0005678

totexpnk       1  0.0009260

incomeage      1  0.0001557

incomenk       1  0.0010217

agenk          1  0.0000095

 

MTB > let k4=1519*0.034

MTB > print k4

 

Data Display

 

K4    51.6460

 

MTB > InvCDF 0.95;

SUBC>   ChiSquare 13.

 

Inverse Cumulative Distribution Function

Chi-Square with 13 DF

P( X <= x )        x

       0.95  22.3620

MTB > # Since nrsq = 1519*0.034= 51.6460 > chi=22.360 we have hetero from white test# Also both B-P and White test seem to indicate that totexp is the culprit

Since nrsq = 51.6460 > 22.360 = , there is sufficient evidence to reject H0 which suggests that there is heteroscedasticity in the model from White's general heteroscedasticity test at the 5% significance level.  Both Breusch Pagan test and White's general heteroscedasticity test seem to indicate that totexp is the culprit as the T value is significant and the P-value is 0.000.


Related Discussions:- Whites general heteroscedasticity test

Differences-in-differences estimator, The estimator of the group by the tim...

The estimator of the group by the time period interaction in a study in which the subjects in two different groups are observed in two different time periods. Normally one of th

Quality control procedures, Quality control procedures is the statistical ...

Quality control procedures is the statistical process designed to ensure that the precision and accuracy of, for instance, a laboratory test, are maintained within the acceptable

Expectaton, sales per day for a product are as follows: x= 10, 11, 12, 13 (...

sales per day for a product are as follows: x= 10, 11, 12, 13 (p)= 0.2, 0.4, 0.3, 0.1 obtain mean and variance of daily sale. if the profit is described by the following equation p

Indirect standardization, Indirect standardization is the procedure of adju...

Indirect standardization is the procedure of adjusting the crude mortality or morbidity rate for one or more variables by making use of a known reference population. It may, for in

Goodmanand kruskal measures of association, Goodmanand kruskal measures of ...

Goodmanand kruskal measures of association is the measures of associations which are useful in the situation where two categorical variables cannot be supposed to be derived from

Linear Programming, 1. The production manager of Koulder Refrigerators must...

1. The production manager of Koulder Refrigerators must decide how many refrigerators to produce in each of the next four months to meet demand at the lowest overall cost. There i

Disease surveillance, The procedure which targets to use the health and hea...

The procedure which targets to use the health and health-related data which precede diagnosis and/or confirmation to identify possible outbreaks of the disease, mobilize a rapid re

Describe hurdle model, Hurdle Model:  The model for count data which postul...

Hurdle Model:  The model for count data which postulates two processes, one generating the zeros in the data and one generating positive values. The binomial model decides the bina

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd