Whites general heteroscedasticity test, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0:  γ1 = γ2 = ...  =  0  i.e.  there is no heteroscedasticity in the model

The Alternative Hypothesis - H1:  at least one of the γi's are not equal to zero i.e. the squared residuals are related to one of the independent variables.

Reject H0 if nR2 > 1640_Tests for Heteroscedasticity.png

MTB > let c23 = c7*c7

MTB > let c24 = c8*c8

MTB > let c25 = c9*c9

MTB > let c26 = c10*c10

MTB > let c27 = c7*c8

MTB > let c28 = c7*c9

MTB > let c29 = c7*c10

MTB > let c30 = c8*c9

MTB > let c31 = c8*c10

MTB > let c32 = c9*c10

C7 = totexp

C8 = income

C9 = age

C10 = nk

C23 = sqtotexp

C24 = sqincome

C25 = sqage

C26 = sqnk

C27 = totexpincome

C28 = totexpage

C29 = totexpnk

C30 = incomeage

C31 = incomenk

C32 = agenk

Regression Analysis: sqres versus totexp, income, ...

* sqnk is highly correlated with other X variables

* sqnk has been removed from the equation.

The regression equation is

sqres = 0.0178 - 0.000232 totexp + 0.000023 income + 0.000298 age - 0.00555 nk

        + 0.000001 sqtotexp + 0.000000 sqincome - 0.000005 sqage

        - 0.000000 totexpincome + 0.000003 totexpage + 0.000015 totexpnk

        - 0.000001 incomeage + 0.000035 incomenk - 0.000021 agenk

 

Predictor            Coef     SE Coef      T      P

Constant         0.017804    0.007900   2.25  0.024

totexp        -0.00023207  0.00005370  -4.32  0.000

income         0.00002344  0.00003865   0.61  0.544

age             0.0002978   0.0003511   0.85  0.396

nk              -0.005551    0.003233  -1.72  0.086

sqtotexp       0.00000060  0.00000011   5.65  0.000

sqincome       0.00000004  0.00000002   1.79  0.074

sqage         -0.00000464  0.00000427  -1.09  0.277

totexpincome  -0.00000041  0.00000013  -3.27  0.001

totexpage      0.00000259  0.00000110   2.36  0.018

totexpnk       0.00001477  0.00001740   0.85  0.396

incomeage     -0.00000110  0.00000090  -1.22  0.223

incomenk       0.00003506  0.00001355   2.59  0.010

agenk         -0.00002146  0.00008647  -0.25  0.804

S = 0.0123952   R-Sq = 3.4%   R-Sq(adj) = 2.5%

Analysis of Variance

Source            DF         SS         MS     F      P

Regression        13  0.0080446  0.0006188  4.03  0.000

Residual Error  1505  0.2312304  0.0001536

Total           1518  0.2392750

 

Source        DF     Seq SS

totexp         1  0.0003007

income         1  0.0000070

age            1  0.0000053

nk             1  0.0000429

sqtotexp       1  0.0037616

sqincome       1  0.0000507

sqage          1  0.0001055

totexpincome   1  0.0010903

totexpage      1  0.0005678

totexpnk       1  0.0009260

incomeage      1  0.0001557

incomenk       1  0.0010217

agenk          1  0.0000095

 

MTB > let k4=1519*0.034

MTB > print k4

 

Data Display

 

K4    51.6460

 

MTB > InvCDF 0.95;

SUBC>   ChiSquare 13.

 

Inverse Cumulative Distribution Function

Chi-Square with 13 DF

P( X <= x )        x

       0.95  22.3620

MTB > # Since nrsq = 1519*0.034= 51.6460 > chi=22.360 we have hetero from white test# Also both B-P and White test seem to indicate that totexp is the culprit

Since nrsq = 51.6460 > 22.360 = , there is sufficient evidence to reject H0 which suggests that there is heteroscedasticity in the model from White's general heteroscedasticity test at the 5% significance level.  Both Breusch Pagan test and White's general heteroscedasticity test seem to indicate that totexp is the culprit as the T value is significant and the P-value is 0.000.


Related Discussions:- Whites general heteroscedasticity test

Principal components analysis, Principal components analysis is a process ...

Principal components analysis is a process for analysing multivariate data which transforms original variables into the new ones which are uncorrelated and account for decreasing

Forest plot, A name sometimes given to the type of diagram generally used i...

A name sometimes given to the type of diagram generally used in meta-analysis, in which point estimates and confidence intervals are displayed for all the studies included in the a

Graphics., how to calculate the semi average method when 8 observations are...

how to calculate the semi average method when 8 observations are given?

Matching, Matching is the method of making a study group and a comparison ...

Matching is the method of making a study group and a comparison group comparable with respect to the extraneous factors. Generally used in the retrospective studies when selecting

Case-cohort study, Case-cohort study : The research design in epidemiology ...

Case-cohort study : The research design in epidemiology which involves the sampling of controls at the outset of the study that is to be compared with the cases from the cohort. Th

Mba, Mention the characteristics of Statistics. Explain any two application...

Mention the characteristics of Statistics. Explain any two applications of Statistics.

Statistically modeling, A comprehensive regression analysis of the case stu...

A comprehensive regression analysis of the case study London has been carried out to test the 4 assumptions of regression: 1. Variables are normally distributed 2. Linear rel

Two - stage distillation process, A mixture of benzene, toluene, and xylene...

A mixture of benzene, toluene, and xylene enters a two-stage distillation process where some of the componentsare recovered. The distillation process operates at steady-state condi

Independent or Dependent variable, Whats the independent variable in the fo...

Whats the independent variable in the following sentence? -1) In a drug prevention program for boys and girls, will family-participation result in effective drug use reduction?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd