What is transitive relations:, Mathematics

Assignment Help:

R is called as a transitive relation if (a, b) € R, (b, c) € R → (a, c) € R

In other terms if a belongs to b, b belongs to c, then a belongs to c.        

Transitivity be unsuccessful only when there exists a, b, c such that a R b, b R c but  a  1680_22.png c.

 

 


Related Discussions:- What is transitive relations:

Function and relation, how to know if it is function and if is relation

how to know if it is function and if is relation

Find the length of the second diagonal, Find the length of the second diago...

Find the length of the second diagonal of a rhombus, whose side is 5cm and one of the diagonals is 6cm.

The alternative hypothesis, The alternative hypothesis When formulatin...

The alternative hypothesis When formulating a null hypothesis we also consider the fact that the belief may be found to be untrue thus we will refuse it.  Therefore we formula

Knowing your learner, Here, we have tried to present some of the different ...

Here, we have tried to present some of the different thinking and learning processes of preschool and primary school children, in the context of mathematics learning. We have speci

Tied rankings, Tied Rankings A slight adjustment to the formula is mad...

Tied Rankings A slight adjustment to the formula is made if several students tie and have the similar ranking the adjustment is: (t 3 - t)/12 Whereas t = number of tied

Example of addition of signed numbers, Example of addition of Signed Number...

Example of addition of Signed Numbers: Example: (-2) + 3 + 4 = 0 - 2 + 3 + 4 Solution: Thus: (-2) + 3 + 4 = 5  Example: 10 + (-5) + 8 + (-7)

Write down the first few terms of the sequences, Write down the first few t...

Write down the first few terms of each of the subsequent sequences. 1. {n+1 / n 2 } ∞ n=1 2. {(-1)n+1 / 2n} ∞ n=0 3. {bn} ∞ n=1, where bn = nth digit of ? So

Use newtons method to find out an approximation, Use Newton's Method to fin...

Use Newton's Method to find out an approximation to the solution to cos x = x which lies in the interval [0,2].  Determine the approximation to six decimal places. Solution

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd