What is the limit of sin (1/x) when x tends to zero?, Mathematics

Assignment Help:

As x tends to zero the value of 1/x tends to either ∞ or -∞. In this situation we will not be sure about the exact value of 1/x. As a result we will not be sure about the exact/approaching value of sin(1/x). We cant say anything about the value of sine function unless we know the angle and in this question we are not sure about the angle as at infinity it can take any value. We will be sure that the value of sin(1/x) will lie in [-1, 1] but not sure about a unique value. As in limits, it exists only when we get a unique value. Therefore we will say that the limit does not exist.


Related Discussions:- What is the limit of sin (1/x) when x tends to zero?

Solve for x and y liner equation, Solve for x , y (x + y - 8)/2   ...

Solve for x , y (x + y - 8)/2   =( x + 2  y - 14)/3 = (3 x + y - 12 )/ 11   (Ans: x=2, y=6) Ans :     x+ y - 8/2  =   x + 2y - 14 /3  =    3x+ y- 12/11

Characteristics of time series, Characteristics of Time Series Time se...

Characteristics of Time Series Time series has the given characteristics. a) A long term trend (T) -tendency of the whole series to fall and rise. b) Seasonal variati

Bisection method and the newton method, 1. Write two m-files, one for the b...

1. Write two m-files, one for the bisection method and another for Newton's method. 2. Using both the Bisection method and the Newton method answer the following: Include th

Mss. Ann, I need marketing management sample assignment as a guide

I need marketing management sample assignment as a guide

Produt promotion, What is the structure of produt promotion?

What is the structure of produt promotion?

Cylindrical coordinate system, how to describe the locus of the equation x^...

how to describe the locus of the equation x^2+6xy+y^2+z^2=1 in cylindrical polar coordinates?

3/11/2013 7:23:14 AM

Limit sin(1/x) when x tends to 0 is not defined

Can be proved simply by multiplying and dividing by x then xsin(1/x)/x becomes 1/x as xsin(1/x)or for that matter sin(1/x)/1/x = 1 and limit reduces to 1/x which doesnt exist

Also the proof can be that when x approcashes 0 from positive side 1/x tends to positive infinty and limit (right0 becomes sin(infinity) but when from left side 1/x tends to negative infinty so limit becomes -sin(infinit) which both can never b equal.

so limit doesnt exist

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd