What is the distance this car will travel in (3x - 8) hours, Mathematics

Assignment Help:

A car travels at a rate of (4x2 - 2). What is the distance this car will travel in (3x - 8) hours?

Use the formula distance = rate × time. Through substitution, distance = (4x2 - 2) × (3x - 8). Use FOIL (First terms of each binomial multiplied, Outer terms inside each multiplied, Inner terms of each multiplied, and Last term of every binomial multiplied) to multiply the binomials: (4x2 • 3x) - (8 • 4x2) - (2 • 3x) - (2 • -8). Simplify each term: 12x3 - 32x2 - 6x + 16.

 


Related Discussions:- What is the distance this car will travel in (3x - 8) hours

Implicit - explicit solution, It's easier to describe an explicit solution,...

It's easier to describe an explicit solution, in this case and then tell you what an implicit solution is not, and after that provide you an illustration to demonstrate you the dif

How many cubic feet of steel is require to construct, A spherical holding t...

A spherical holding tank whose radius to the outer surface is 10 feet is constructed of steel 1 inch thick. How many cubic feet of steel is require to construct the holding tank? R

Basic concepts of second order differential equations, In this section we w...

In this section we will be looking exclusively at linear second order differential equations. The most common linear second order differential equation is in the type.  p (t ) y

Fraction word problem, castor brought 6 3/4 carat cakes to share with 26 st...

castor brought 6 3/4 carat cakes to share with 26 students. did castor bring enough for each student to have 1/4 of cake?

Rolles theorem, Rolle's Theorem  Assume f(x) is a function which satis...

Rolle's Theorem  Assume f(x) is a function which satisfies all of the following. 1. f(x) is continuous in the closed interval [a,b]. 2. f(x) is differentiable in the ope

Law of Iterative Expectation, #quesSuppose we have a stick of length L. We ...

#quesSuppose we have a stick of length L. We break it once at some point X ~ Unif(0;L). Then we break it again at some point Y ~ Unif(0;X). Use the law of iterated expectation to c

Determine the order of the local truncation error, The backwards Euler diff...

The backwards Euler difference operator is given by for differential equation y′ = f(t, y). Determine the order of the local truncation error. Explain why this difference o

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd