What is q-switching in laser, Electrical Engineering

Assignment Help:

What is Q-switching in laser ? Give its application. Discuss the elementary idea of mode locking.

Generation of high power pulses

There are three basic techniques to generate high power pulses from laser. These are called : 1. Q-Switching  2. Cavity Damping  3. Mode LockingIn normal mode, some lasers work in continuous wave mode while others work in pulsed wave mode. In both the modes power obtained is generally small. In many applications we require high power lasers even though for a very small duration. The above techniques are useful for large peak powers even though for short time. Q-switching and mode locking techniques are discussed as under:

Q-Switching

When we switch in the laser, optical pumping rate towards a steady state which depends on the pumping rate towards upper level to the decay rate towards lower level. Here laser beam begin to grow and ultimately reaches a saturation state when the intensity starts drawing energy from the medium. As the beam grows, population density N is reduced by stimulated emission and consequently the inversion density reaches a new lower steady steady value. The time to teach this new equilibrium value is the time required for the developing beam to make m transits through the amplifier and the relation is given by where   d-distance between two mirrors   l-length of gain medium   nL-refractive index of the medium   nc-refractive index of the space within cavity that does not include gain medium. Values of t range between 1 ns to 103 ns in most laser system, the upper inner level life time is shorter than t except in case of solid state lasers in which upper level life time t is longer than t . If it were possible to pump this solid state gain media for the duration of t without the cavity in place and then suddenly switch the cavity back into place, it would be possible to operate laser with highest possible gain and thereby get higher peak in the form of a giant pulse as the gain is much above the steady state condition. The process of observing the above technique is called Q-Switching as in this case the cavity is changed from low Q to a high Q state, where Q corresponds to the energy stored to the energy dissipated within the cavity. In order to produce necessary high inversion density required for Q-Switching, the following requirement must be satisfied. 

Mode Locking

In Q-Switching, the pulses generated are short but their duration is – few ns. Another technique has been developed where optical pulses as short as 6*10-15 sec can be obtained and this technique is called mode locking. For visible pulses of such a short duration, the electric field oscillated for only a few cycles. Mode locking is achieved by combining in phase a number of distinct longitudinal modes of a laser, all having different frequencies. When modes of waves of different frequencies but random phases are added, they produce a fandom distributed, average output of both the electric field and the intensity in the time domain. The first mode-locking was obtained by Hargrave, Fork and Pollack and since the this technique has become a powerful method of producing very short duration pulses of the order of 10-11th 10-12 sec.


Related Discussions:- What is q-switching in laser

For the nor and inverter realizations, Q. For the NOR and inverter realizat...

Q. For the NOR and inverter realizations shown in Figure, find the truth table, the type of gate realized, and the expression for the logic output, in each case.

State the features of washing machines, State the features of Washing machi...

State the features of Washing machines Microprocessor would be used to control the below features, for instance: - Water temperature -  Time for every cycle -  Wash cy

Determine the voltage at the load terminals, Two single-phase 60-Hz sinusoi...

Two single-phase 60-Hz sinusoidal-source generators (with negligible internal impedances) are supplying to a common load of 10 kW at 0.8 power factor lagging. The impedance of the

Construct a suitable piecewise linear equivalent circuit, Problem: The ...

Problem: The current voltage characteristic [ ID versus VD] of a semiconductor diode for VD > 0 [forward bias] is given in Figure Under reverse bias conditions [VD Fi

Explain the basic concepts in memory interfacing, Explain the Basic concept...

Explain the Basic concepts in memory interfacing The primary function of memory interfacing is that the microprocessor should be able to read from and write into a given regist

Calculate the analog output voltag, For the 3-bit 2 n -R D/A converter of ...

For the 3-bit 2 n -R D/A converter of Figure, calculate the analog output voltage when the input is (a) 100, and (b) 010. Solution a. For the binary input 100, switches con

What is global positioning satellite, What is Global Positioning Satellites...

What is Global Positioning Satellites (GPS) Global positioning satellite (GPS) systems are used to determine exact location of a car, ship, airplane or any conveyance that trav

Compute the maximum flux passing through the coil, Q. The 50-turn coil in t...

Q. The 50-turn coil in the configuration of Figure is rotated at a constant speed of 300 r/min. The axis of rotation is perpendicular to a uniform magnetic flux density of 0.1 T. T

Illustrates typical thermal noise waveform, Q. Illustrates typical thermal ...

Q. Illustrates typical thermal noise waveform? In general, any physical resistor or lossy device can be modeled by a noise source in series with a noiseless resistor, as shown

Static v- i characteristics - power semiconductor devices, V- I Characteris...

V- I Characteristics The operation of the  diac can be explained by imagining it as two diodes connected  in series. When  applied voltage in either polarity is small ( less t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd