What is q-switching in laser, Electrical Engineering

Assignment Help:

What is Q-switching in laser ? Give its application. Discuss the elementary idea of mode locking.

Generation of high power pulses

There are three basic techniques to generate high power pulses from laser. These are called : 1. Q-Switching  2. Cavity Damping  3. Mode LockingIn normal mode, some lasers work in continuous wave mode while others work in pulsed wave mode. In both the modes power obtained is generally small. In many applications we require high power lasers even though for a very small duration. The above techniques are useful for large peak powers even though for short time. Q-switching and mode locking techniques are discussed as under:

Q-Switching

When we switch in the laser, optical pumping rate towards a steady state which depends on the pumping rate towards upper level to the decay rate towards lower level. Here laser beam begin to grow and ultimately reaches a saturation state when the intensity starts drawing energy from the medium. As the beam grows, population density N is reduced by stimulated emission and consequently the inversion density reaches a new lower steady steady value. The time to teach this new equilibrium value is the time required for the developing beam to make m transits through the amplifier and the relation is given by where   d-distance between two mirrors   l-length of gain medium   nL-refractive index of the medium   nc-refractive index of the space within cavity that does not include gain medium. Values of t range between 1 ns to 103 ns in most laser system, the upper inner level life time is shorter than t except in case of solid state lasers in which upper level life time t is longer than t . If it were possible to pump this solid state gain media for the duration of t without the cavity in place and then suddenly switch the cavity back into place, it would be possible to operate laser with highest possible gain and thereby get higher peak in the form of a giant pulse as the gain is much above the steady state condition. The process of observing the above technique is called Q-Switching as in this case the cavity is changed from low Q to a high Q state, where Q corresponds to the energy stored to the energy dissipated within the cavity. In order to produce necessary high inversion density required for Q-Switching, the following requirement must be satisfied. 

Mode Locking

In Q-Switching, the pulses generated are short but their duration is – few ns. Another technique has been developed where optical pulses as short as 6*10-15 sec can be obtained and this technique is called mode locking. For visible pulses of such a short duration, the electric field oscillated for only a few cycles. Mode locking is achieved by combining in phase a number of distinct longitudinal modes of a laser, all having different frequencies. When modes of waves of different frequencies but random phases are added, they produce a fandom distributed, average output of both the electric field and the intensity in the time domain. The first mode-locking was obtained by Hargrave, Fork and Pollack and since the this technique has become a powerful method of producing very short duration pulses of the order of 10-11th 10-12 sec.


Related Discussions:- What is q-switching in laser

Why memory decoding is required, Why memory decoding is required? To a...

Why memory decoding is required? To attach a memory device to the microprocessor, this is necessary to decode the address sent by the microprocessor. Decoding creates the memo

Explain contact resistance, Explain Contact resistance. Contact resista...

Explain Contact resistance. Contact resistance: It is measured as the voltage drop from tail to tail of the mated contacts along with specified current flowing through the cont

Digital electronics, A universal shift register can shift in both the left-...

A universal shift register can shift in both the left-to-right and right-to-left directions, and it has parallel-load capability. Draw a circuit for such a shift register.

Resistance of 800 m of copper cable of cross-sectional area, Find the resis...

Find the resistance of 800 m of copper cable of cross-sectional area 20 mm . Take the resistivity of copper as 0.02 Ωm.

The operation of colpitts oscillator, Q. Explain with the help of a circuit...

Q. Explain with the help of a circuit diagram,the operation of COLPITTS OSCILLATOR. Oscillator is a circuit used to generate a.c voltage without a.c.input signal.The energy to

Explain fourier series, Q. Explain Fourier Series? The phasor method of...

Q. Explain Fourier Series? The phasor method of circuit analysis can be extended (by using the principle of superposition) to find the response in linear systems due to nonsinu

Boolean functions by employing 8-to-1multiplexers, Q. Implement the followi...

Q. Implement the following Boolean functions by employing 8-to-1multiplexers. (a) F 1 (A,B,C) = Σ m i (0, 2, 4, 6) (b) F 2 (A,B,C) = Σ m i (1, 3, 7)

Write short note on quantization, Q. Write short note on Quantization? ...

Q. Write short note on Quantization? Quantization: This is first step in PCM. Total amplitude range of the modulating signal is divided into a number of standard levels calle

Fault analysis, The one line diagram of a simple three phase power system i...

The one line diagram of a simple three phase power system is shown in figure below. Each generator is represented by an emf behind the transient reactance. All impedances are expre

Xthl exchange top of the stack with hl instruction , XTHL Exchange top of t...

XTHL Exchange top of the stack with HL Instruction The contents  of top  two location of the  stack are exchanged with the  contents of HL register pair. The contents  of reg

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd