Wavy curve method, Mathematics

Assignment Help:

In order to compute the inequalities of the form

428_22.png

 

where n1, n2, ....... , n k , m1, m2, ....... , mp are natural and real numbers and a1, a2, ... , ak, b1, b2, ..., bp are any real number such that ai ≠ bj where i = 1, 2, 3, ....k and j = 1, 2, 3, ....p.

 

Method:

Step - 1 First place all values of x at which either denominator or numerator is becomes zero, that denotes a1, a2,....., ak, b1, b2, ....bp in ascending order say c1, c2, c3,....... cp + k. draw them on real line

2149_22.png

Step -2  Value of x number at which numerator tends to zero could be remarked with dark circles.

Step - 3  All pints of discontinuities (x at which denominator tends to zero) could be remarked on number line with empty circles. Calculate the value of f(x) for any real number bigger than the right most checked number on the number line.

Step - 4  From right to left presented a wavy curve (beginnings above the number line in type of value of f(x) is positive in step-3 otherwise from below the number line), going thoroughly all the checked points. So that when goes through a point (exponent whose related factor is odd) intersects the number line, and when going thoroughly a point (exponent whose related factor is even) the curve doesn't cut the real line and stay on the similar side of real line.

Step - 5 The suitable intervals are selected in accordance with the sign of inequality (the function f(x) is positive wherever the curve is over the number line, it is negative if the curve is searched below the number line). Their union shows the solution of inequality

 

 

 


Related Discussions:- Wavy curve method

Interpretation of r – problems in interpreting r values, Interpretation of ...

Interpretation of r - Problems in interpreting r values A high value of r as +0.9 or - 0.9 only shows a strong association among the two variables but doesn't imply that th

The mean value theorem for integrals, The Mean Value Theorem for Integrals ...

The Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus, a ∫ b f(x) dx = f(c)(b -a) Proof Let's begin

Example of integrals involving trig functions, Example of Integrals Involvi...

Example of Integrals Involving Trig Functions Example: Estimate the following integral. ∫ sin 5 x dx Solution This integral no longer contains the cosine in it that

Roman numerals, how to determine roman numerals to digits specially when it...

how to determine roman numerals to digits specially when it hundred thousands

Differential Equations, Find the normalized differential equation which has...

Find the normalized differential equation which has { x, xe^x } as its fundamental set

Homogeneous system , Provided a homogeneous system of equations (2), we wil...

Provided a homogeneous system of equations (2), we will have one of the two probabilities for the number of solutions. 1.   Accurately one solution, the trivial solution 2.

Linear algrebra, how do we solve multiple optimal solution

how do we solve multiple optimal solution

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd