Vhdl, Electrical Engineering

Assignment Help:
Im doing my final year project and Im stuck in vhdl coding. The main mission of this project is to design and build a tap changer which is going to be fitted to power transformers for regulation of the output voltage to required levels for the Micro Grid.
The tap changer system will consist of 9 changers with a 4v step having 9 switches/ Relays. 5 relays will be in the first stage, second stage consist of 3 relays, third stage has got 2 relays and the final stage has 1 relay. The voltage range of the tap changer 399- 431, Tap changer will perform step-up or step-down duties depending on what is requires. ( Tap1-399volts, Tap2 403volts, Tap3 407volts, Tap4 411volts, Tap5 415volts, Tap6 419volts, Tap7 423volts, Tap8 427volts, Tap9 2311volts. )
Im using vhdl programme to control the switches( switch1 to switch 9) using Spartan 3 board and displaying the selected switch on the board. I have written a bit of the the code which is at the bottom and im completely stuck I just need help in finishing the code and have attached the You are my last hope .

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity UPDOWNCOUNTERHOLD is
Port ( Clock : in STD_LOGIC;
Reset : in STD_LOGIC;
-- Automatic : in STD_LOGIC;--- AUTOMATIC SELECTION
Tap_set : in STD_LOGIC;--- ACTIVATES THE TAP SELECTED
SW : in STD_LOGIC_VECTOR (8 downto 0);---- switch for Tap 1 up to 9
--SSG_input : in std_logic_vector(3 downto 0); -- input to seven segment display
Tap_Output: out STD_LOGIC_VECTOR (8 downto 0);-- Tap output
SSG_out : out STD_LOGIC_VECTOR (6 downto 0);--- SEVEN SEGMENT OUTPUT DISPLAY
AN0 : out STD_LoGIC);
end UPDOWNCOUNTERHOLD;

architecture Behavioral of UPDOWNCOUNTERHOLD is

Constant Max_tap :integer := 9;-- referance for the switches
signal Max_tap_vector:std_logic_vector(3 downto 0);
Signal Auto :STD_LOGIC;---- signal for Automatic
Signal Tap_select :STD_LOGIC;-----signal for Tap_set
Signal Switch :std_logic_vector(3 downto 0);----- signal for SW
Signal Tap_out :std_logic_vector(3 downto 0);----- signal for Tap_Output
Signal Seven_segment :std_logic_vector(6 downto 0);----- signal for the seven segment display
SIGNAL S_SW :std_logic_vector(3 DOWNTO 0);----- SIGANAL FOR SWITCH IN MAUNAL/TAP SELECT
BEGIN
PROCESS(Clock,Reset,Tap_set)

BEGIN

IF (Reset = ''1'') THEN

Tap_out <= "0001"; -- reset to tap 1
Seven_segment <= "1001111" ;-- reset it to display tap 1

ELSIF (rising_edge(Clock)) THEN

IF (Tap_set = ''1'') THEN

Tap_Out<= Switch; -- running on manual output depends on the tap switch which is on

end if;

IF (Tap_out > Max_tap) THEN ---- If the output is more than 9 reset

Tap_Out<= "0001"; --- reset to tap 1
Seven_segment <= "1001111" ;-- reset it to display tap 1

IF (conv_integer(Max_tap)) = Max_tap_vector then

--IF (conv_integer(Max_tap_vector)) = Max_tap then------converting interger
--OTHER_VECTOR<=(others =>''0'');
END IF;
END IF;
End if;
END PROCESS;
PROCESS(SW,Clock)
Begin
--S_SW <= SW(3 DOWNTO 0) ;
case SW is
when "0001"=>SSG_out<= "1001111";
when "0010"=>SSG_out<= "0010010";
when "0011"=>SSG_out<= "0000110";
when "0100"=>SSG_out<= "1001100";
when "0101"=>SSG_out<= "0100100";
when "0110"=>SSG_out<= "0100000";
when "0111"=>SSG_out<= "0001111";
when "1000"=>SSG_out<= "0000000";
when "1001"=>SSG_out<= "0000100";
--nothing is displayed when a number more than 9 is given as input.
when others =>SSG_out<="1111111" ;
end case ;
END PROCESS;
end Behavioral;
?

Related Discussions:- Vhdl

States ohm''s law, States Ohm's law Ohm's law describes that the curren...

States Ohm's law Ohm's law describes that the current I flowing in a circuit is directly proportional to the applied voltage V and inversely proportional to the resistance R, g

Inductor, What will I write in Inductor conclusion

What will I write in Inductor conclusion

Determine current for a bjt, Q. For a BJT with vBE = 0.7V, I CBO = 4 nA, ...

Q. For a BJT with vBE = 0.7V, I CBO = 4 nA, i E = 1 mA, and i C = 0.9 mA, evaluate α, iB,iSE, and β.

Explain resistance-capacitance coupling, Q. Explain Resistance-capacitance ...

Q. Explain Resistance-capacitance coupling? It is the most commonly used coupling in discrete device amplifier as it is least expensive and has satisfactory frequency response.

Explain idiv instructions in 8086 family, Explain IDIV instructions in 80...

Explain IDIV instructions in 8086 family with example and their effect on flag. IDIV: It used to divide a 16-bit signed number with an 8-bit signed no. or 32 bit signed numb

Prove modified algorithm better than the elevator algorithm, A slight modif...

A slight modification of the elevator algorithm for scheduling disk requests is to always scan in the same direction, In what respect is this modified algorithm better than the ele

Forecast the retail price of industrial electricity, Your assignment is to ...

Your assignment is to write a one page paper answering the question posed below. One page is the absolute limit. (You must attach a technical appendix showing computer output for

Power flow analysis, Ask question #Minimum 10] In the system shown in Fig...

Ask question #Minimum 10] In the system shown in Figure 4-1, the rated voltage of the line is 110kv, and the conductors are all LGJ-120 type. The parameters are: r1=0.21O/km,x1=0

What is the difference between photodiode and solar cell, A photodiode is m...

A photodiode is made to detect light quickly a solar cell is made to collect energy from light. They are both typically silicon diodes, but modified to meet their dissimilar requir

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd