Velocity of derivation, Mathematics

Assignment Help:

Velocity : Recall that it can be thought of as special case of the rate of change interpretation. If the situation of an object is specified by f(t ) after t units of time the velocity of the object at t = a is given by f ′ ( a ) .

Example   Assume that the position of an object after t hours is specified by,

                                          g (t ) =t/t+1

Answer following

(a) Is the object moving towards the right or the left at t = 10 hours? 

(b) Does the object ever stop moving? 

 Solution; The derivative is,               g ′ (t ) = 1 /(t + 1)2

 (a) Is the object moving towards the right or the left at t = 10 hours?

To find out if the object is moving to the right (velocity is positive) or left (velocity is negative) we require the derivative at t = 10 .

                                                             g′ (10) =1 /121

Thus the velocity at t = 10 is positive and hence the object is moving to the right at t = 10 .

(b) Does the object ever stop moving?

If the velocity is ever zero then the object will stop moving.  Though, note that the only way a rational expression will ever be zero is if the numerator is zero. As the numerator of the derivative (and therefore the speed) is constant it can't be zero.

Then, the object will not at all stop moving.

Actually, we can say little more here. The object will be moving always to the right as the velocity is always +ve.

Here we've seen three major interpretations of the derivative.  You must remember these, specially the rate of change, as they will continually show up throughout this course.


Related Discussions:- Velocity of derivation

Using karnaugh map, a) Using Karnaugh map, show X': A'BC'D'+ ABC'D'+ A'B...

a) Using Karnaugh map, show X': A'BC'D'+ ABC'D'+ A'BCD'+ ABCD'                                                                                           (b) If R is an equival

Relate Fractions and Whole Numbers, Jon ran around a track that was one eig...

Jon ran around a track that was one eighth of a mile long.He ran around the track twenty four times.How many miles did Jon run in all

QUANITATIVE METHODS, COMMENT ON QUANTITATIVE TECHNIQUES IS A SCIENTIFIC AND...

COMMENT ON QUANTITATIVE TECHNIQUES IS A SCIENTIFIC AND FOR ENHANCING CREATIVE AND JUDICIOUS CAPABILITIES OF A DECISION MAKER

Define period, Q. Define Period, Amplitude and Phase Shift? Ans. P...

Q. Define Period, Amplitude and Phase Shift? Ans. Period, amplitude and phase shift are used when describing a sinusoidal curve The period of a function is the smallest

Min Problem, I need help solving this question...You have to design a recta...

I need help solving this question...You have to design a rectangular flyer. The top and bottom must have 5" margins and the left and right sides must have 2" margins. If you must

Two consecutive integers is 15 find out the larger integer, If the differen...

If the difference among the squares of two consecutive integers is 15 find out the larger integer. Let x = the lesser integer and let x + 1 = the greater integer. The sentence,

Angles, Find the acute angle theta that satisfies the given equation. Give ...

Find the acute angle theta that satisfies the given equation. Give theta in both degrees and radians. You should do these problems without a calculator. Sin= sqroot3/2

Geometry, find the value of 0 that makes cos 21 degrees = sin 0 statement t...

find the value of 0 that makes cos 21 degrees = sin 0 statement true.

#titlefunction.., provide a real-world example or scenario that can be expr...

provide a real-world example or scenario that can be express as a relation that is not a function

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd