Velocity of derivation, Mathematics

Assignment Help:

Velocity : Recall that it can be thought of as special case of the rate of change interpretation. If the situation of an object is specified by f(t ) after t units of time the velocity of the object at t = a is given by f ′ ( a ) .

Example   Assume that the position of an object after t hours is specified by,

                                          g (t ) =t/t+1

Answer following

(a) Is the object moving towards the right or the left at t = 10 hours? 

(b) Does the object ever stop moving? 

 Solution; The derivative is,               g ′ (t ) = 1 /(t + 1)2

 (a) Is the object moving towards the right or the left at t = 10 hours?

To find out if the object is moving to the right (velocity is positive) or left (velocity is negative) we require the derivative at t = 10 .

                                                             g′ (10) =1 /121

Thus the velocity at t = 10 is positive and hence the object is moving to the right at t = 10 .

(b) Does the object ever stop moving?

If the velocity is ever zero then the object will stop moving.  Though, note that the only way a rational expression will ever be zero is if the numerator is zero. As the numerator of the derivative (and therefore the speed) is constant it can't be zero.

Then, the object will not at all stop moving.

Actually, we can say little more here. The object will be moving always to the right as the velocity is always +ve.

Here we've seen three major interpretations of the derivative.  You must remember these, specially the rate of change, as they will continually show up throughout this course.


Related Discussions:- Velocity of derivation

Duality., advanteges of duality

advanteges of duality

Which of the subsequent numbers will yield a number larger, Which of the su...

Which of the subsequent numbers will yield a number larger than 23.4 while it is multiplied by 23.4? When multiplying through a number less than 1, you get a product in which i

Law of cosines - vector, Theorem a → • b → = ||a → || ||b → || cos• ...

Theorem a → • b → = ||a → || ||b → || cos• Proof Let us give a modified version of the diagram above. The three vectors above make the triangle AOB and note tha

Permuation and combination, how many words can be formed from letters of wo...

how many words can be formed from letters of word daughter such that each word contain 2vowles and 3consonant

Determine z-scores and percentiles, Q. Determine Z-scores and Percentiles? ...

Q. Determine Z-scores and Percentiles? Ans. Z-scores help measure how far a piece of data is from the mean. More specifically, Z-scores tell how far a piece of data is fr

Basic indefinite integrals- computing indefinite integrals, Basic indefinit...

Basic indefinite integrals The first integral which we'll look at is the integral of a power of x.                                ∫x n dx = (x n +1 / n + 1)+ c,          n

first and third quartiles, From the data given below calculate the value o...

From the data given below calculate the value of first and third quartiles, second and ninth deciles and forty-fifth and fifty-seventh percentiles.

How to solve systems of equations, How to solve Systems of Equations ? ...

How to solve Systems of Equations ? There's a simple method that you can use to solve most of the systems of equations you'll encounter in Calculus. It's called the "substitut

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd