Velocity and acceleration - three dimensional space, Mathematics

Assignment Help:

Velocity and Acceleration - Three Dimensional Space

In this part we need to take a look at the velocity and acceleration of a moving object.   

From Calculus I we are familiar with that given the position function of an object that the velocity of the object is the 1st derivative of the position function and the acceleration of the object is the 2nd derivative of the position function. 

Thus, given this it shouldn't be too surprising that whether the position function of an object is specified by the vector function  r→(t) then the velocity and acceleration of the object is illustrated by,

v (t) = r'(t)

a (t) = r'' (t)

Note: The velocity and acceleration are as well going to be vectors also.

In the study of the motion of objects the acceleration is frequently broken up into a tangential component, aT, and the normal component denoted as aN.  The tangential component is the part or element of the acceleration which is tangential to the curve and the normal component is the part of the acceleration which is normal or orthogonal to the curve.  If we do this we can write down the acceleration as,

a = aT T+ aNN

where T and N stands for the unit tangent and unit normal for the position function.

If we illustrate v = ||v (t)|| then the tangential and normal components of the acceleration are specified by,  

aT = v' =r' (t).r''(t) /(||r' (t)||)

aN = kv2 = ||?r' (t) *r" (t)|| / ||r' (t)||

in which k is the curvature for the position function.

There are two (2) formulas to employ here for each component of the acceleration and when the second formula may seem excessively complicated it is frequently the easier of the two.  In the tangential component, v, might be messy and calculating the derivative may be unpleasant.  In the normal component we will previously be computing both of these quantities in order to get the curvature and thus the second formula in this case is certainly the easier of the two.


Related Discussions:- Velocity and acceleration - three dimensional space

Find out the roots of the subsequent pure quadratic equation, Find out the ...

Find out the roots of the subsequent pure quadratic equation: Find out the roots of the subsequent pure quadratic equation. 4x 2 - 100 = 0 Solution: Using Equation

Math help, What fraction of the full price will you pay for 2 shirts? 3 4 ...

What fraction of the full price will you pay for 2 shirts? 3 4 11 2 $45.001 2 .

Trigonometry, explain the formular for finding trigonometry

explain the formular for finding trigonometry

Karls pearsons co-efficient of correlation, Aim: To test the significan...

Aim: To test the significant relationship between the accounting ratios of operating management and standard ideal ratios. Null Hypothesis(H 0 ) : There is no significa

Determine matrix of transformation for orthogonal projection, Determine the...

Determine the matrix of transformation for the orthogonal projection onto the line L that passes through the origin and is in the direction Û=(3/13 , 4/13 , 12/13). Determine the r

Determine the area of the inner loop - polar coordinates, Determine or find...

Determine or find out the area of the inner loop of r = 2 + 4 cosθ. Solution We can graphed this function back while we first started looking at polar coordinates.  For thi

Example of circles - common polar coordinate graphs, Example of Circles - C...

Example of Circles - Common Polar Coordinate Graphs Example: Graph r = 7, r = 4 cos θ, and r = -7 sin θ on similar axis system. Solution The very first one is a circle

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd