Velocity and acceleration - three dimensional space, Mathematics

Assignment Help:

Velocity and Acceleration - Three Dimensional Space

In this part we need to take a look at the velocity and acceleration of a moving object.   

From Calculus I we are familiar with that given the position function of an object that the velocity of the object is the 1st derivative of the position function and the acceleration of the object is the 2nd derivative of the position function. 

Thus, given this it shouldn't be too surprising that whether the position function of an object is specified by the vector function  r→(t) then the velocity and acceleration of the object is illustrated by,

v (t) = r'(t)

a (t) = r'' (t)

Note: The velocity and acceleration are as well going to be vectors also.

In the study of the motion of objects the acceleration is frequently broken up into a tangential component, aT, and the normal component denoted as aN.  The tangential component is the part or element of the acceleration which is tangential to the curve and the normal component is the part of the acceleration which is normal or orthogonal to the curve.  If we do this we can write down the acceleration as,

a = aT T+ aNN

where T and N stands for the unit tangent and unit normal for the position function.

If we illustrate v = ||v (t)|| then the tangential and normal components of the acceleration are specified by,  

aT = v' =r' (t).r''(t) /(||r' (t)||)

aN = kv2 = ||?r' (t) *r" (t)|| / ||r' (t)||

in which k is the curvature for the position function.

There are two (2) formulas to employ here for each component of the acceleration and when the second formula may seem excessively complicated it is frequently the easier of the two.  In the tangential component, v, might be messy and calculating the derivative may be unpleasant.  In the normal component we will previously be computing both of these quantities in order to get the curvature and thus the second formula in this case is certainly the easier of the two.


Related Discussions:- Velocity and acceleration - three dimensional space

Tangents, case 2:when center is not known proof

case 2:when center is not known proof

Parenteral calculations, 850ml is to be administered to a person over 8 hou...

850ml is to be administered to a person over 8 hours using a drop factor of 20 drops/ml what is the flow rate in gtts/min ?

Drawn to a circle with center o, From a point P, two tangents PA are drawn ...

From a point P, two tangents PA are drawn to a circle with center O.If OP=diameter of the circle show that triangle APB is equilateral. Ans:    PA=PB (length of tangents

Determine the value of the unknown side of a right triangle, Determine the ...

Determine the value of the unknown side of a right triangle: The two legs of a right triangle are 5 ft and 12 ft.  How long is the hypotenuse? Now Let the hypotenuse be c ft.

Prove that a simple graph is connected, Prove that a simple graph is connec...

Prove that a simple graph is connected if and only if it has a spanning tree.    Ans: First assume that a simple graph G has a spanning  tree T.  T consists of every node of G.

Types of sets, NULL/ VOID/ EMPTY SET A set which has no element is know...

NULL/ VOID/ EMPTY SET A set which has no element is known as the null set or empty set and is indicated by f (phi). The number of elements of a set A is indicated as n (A) and

Sequences, what is the answer to 2.1 to 4.2

what is the answer to 2.1 to 4.2

Trigonometry, Ashow that sec^2x+cosec^2x cannot be less than 4

Ashow that sec^2x+cosec^2x cannot be less than 4

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd