Velocity and acceleration - three dimensional space, Mathematics

Assignment Help:

Velocity and Acceleration - Three Dimensional Space

In this part we need to take a look at the velocity and acceleration of a moving object.   

From Calculus I we are familiar with that given the position function of an object that the velocity of the object is the 1st derivative of the position function and the acceleration of the object is the 2nd derivative of the position function. 

Thus, given this it shouldn't be too surprising that whether the position function of an object is specified by the vector function  r→(t) then the velocity and acceleration of the object is illustrated by,

v (t) = r'(t)

a (t) = r'' (t)

Note: The velocity and acceleration are as well going to be vectors also.

In the study of the motion of objects the acceleration is frequently broken up into a tangential component, aT, and the normal component denoted as aN.  The tangential component is the part or element of the acceleration which is tangential to the curve and the normal component is the part of the acceleration which is normal or orthogonal to the curve.  If we do this we can write down the acceleration as,

a = aT T+ aNN

where T and N stands for the unit tangent and unit normal for the position function.

If we illustrate v = ||v (t)|| then the tangential and normal components of the acceleration are specified by,  

aT = v' =r' (t).r''(t) /(||r' (t)||)

aN = kv2 = ||?r' (t) *r" (t)|| / ||r' (t)||

in which k is the curvature for the position function.

There are two (2) formulas to employ here for each component of the acceleration and when the second formula may seem excessively complicated it is frequently the easier of the two.  In the tangential component, v, might be messy and calculating the derivative may be unpleasant.  In the normal component we will previously be computing both of these quantities in order to get the curvature and thus the second formula in this case is certainly the easier of the two.


Related Discussions:- Velocity and acceleration - three dimensional space

1, how do you find the perimeter of an equalateral triangle

how do you find the perimeter of an equalateral triangle

Ploting of mathematical graphs, how can we represent this mathematical equa...

how can we represent this mathematical equation on a graph y=2x-1

CIECLE, HOW TO DRAW A TANGENT SEGMENTS TO A CIRCLE WHEN CENTRE IS NOT KNOWN...

HOW TO DRAW A TANGENT SEGMENTS TO A CIRCLE WHEN CENTRE IS NOT KNOWN?

Shares and dividend, A man in rested rupee 800 is buying rupee5 shares and ...

A man in rested rupee 800 is buying rupee5 shares and then they are selling at premium of rupee 1.15.he sells all the share.find profit?

prove that 2a=b+c, If the roots of the equation (a-b) x 2 + (b-c) x+ (...

If the roots of the equation (a-b) x 2 + (b-c) x+ (c - a)= 0 are equal. Prove that 2a=b+c. Ans:    (a-b) x 2 + (b-c) x+ (c - a) = 0 T.P 2a = b + c B 2 - 4AC = 0

Homework, joey asked 30 randomly selected students if they drank milk, juic...

joey asked 30 randomly selected students if they drank milk, juice, or bottled water with their lunch. He found that 9 drank milk, 16 drank juice, and 5 drank bottled water. If the

Systems of differential equations, For this point we've only looked as solv...

For this point we've only looked as solving particular differential equations. Though, many "real life" situations are governed through a system of differential equations. See the

Learning and formulating maths teaching strategies, Before going further, l...

Before going further, let us repeat an aspect of learning which is useful to keep in mind while formulating teaching strategies. A child who can add or subtract in the context of s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd