Velocity and acceleration - three dimensional space, Mathematics

Assignment Help:

Velocity and Acceleration - Three Dimensional Space

In this part we need to take a look at the velocity and acceleration of a moving object.   

From Calculus I we are familiar with that given the position function of an object that the velocity of the object is the 1st derivative of the position function and the acceleration of the object is the 2nd derivative of the position function. 

Thus, given this it shouldn't be too surprising that whether the position function of an object is specified by the vector function  r→(t) then the velocity and acceleration of the object is illustrated by,

v (t) = r'(t)

a (t) = r'' (t)

Note: The velocity and acceleration are as well going to be vectors also.

In the study of the motion of objects the acceleration is frequently broken up into a tangential component, aT, and the normal component denoted as aN.  The tangential component is the part or element of the acceleration which is tangential to the curve and the normal component is the part of the acceleration which is normal or orthogonal to the curve.  If we do this we can write down the acceleration as,

a = aT T+ aNN

where T and N stands for the unit tangent and unit normal for the position function.

If we illustrate v = ||v (t)|| then the tangential and normal components of the acceleration are specified by,  

aT = v' =r' (t).r''(t) /(||r' (t)||)

aN = kv2 = ||?r' (t) *r" (t)|| / ||r' (t)||

in which k is the curvature for the position function.

There are two (2) formulas to employ here for each component of the acceleration and when the second formula may seem excessively complicated it is frequently the easier of the two.  In the tangential component, v, might be messy and calculating the derivative may be unpleasant.  In the normal component we will previously be computing both of these quantities in order to get the curvature and thus the second formula in this case is certainly the easier of the two.


Related Discussions:- Velocity and acceleration - three dimensional space

Please solve this question, The number of integral pairs (x,y) satisfying t...

The number of integral pairs (x,y) satisfying the equation x^2=y^2+1294 is a)2 b)3 c)4 d)None of these

Least common denominator, Let's recall how do to do this with a rapid numbe...

Let's recall how do to do this with a rapid number example.                                                     5/6 - 3/4 In this case we required a common denominator & reme

Function and relation, how to know if it is function and if is relation

how to know if it is function and if is relation

Marketing research, In pharmaceutical product research doctors visit the pl...

In pharmaceutical product research doctors visit the place to learn what

Fractions, If i worked 7 1/3 hours and planted 11 trees how many hours did ...

If i worked 7 1/3 hours and planted 11 trees how many hours did it take to plant each tree?

Mean value theorem function, Mean Value Theorem : Suppose f (x) is a funct...

Mean Value Theorem : Suppose f (x) is a function which satisfies both of the following. 1. f ( x )is continuous on the closed interval [a,b]. 2. f ( x ) is differentiable on

The achievements from math, i love math..but i am afraid to study it... i m...

i love math..but i am afraid to study it... i mean i ma afraid that it may leave me in clay...what can you suggest me?

Numercial analysis and computer techniques, write FORTRAN programme to gene...

write FORTRAN programme to generate prime numbers between 1 and 100

Utilize the chain rule to differentiate, Chain Rule : Assume that we have ...

Chain Rule : Assume that we have two functions f(x) & g(x) and they both are differentiable. 1.   If we define F ( x ) = ( f o g ) ( x ) then the derivative of F(x) is,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd