Velocity and acceleration - three dimensional space, Mathematics

Assignment Help:

Velocity and Acceleration - Three Dimensional Space

In this part we need to take a look at the velocity and acceleration of a moving object.   

From Calculus I we are familiar with that given the position function of an object that the velocity of the object is the 1st derivative of the position function and the acceleration of the object is the 2nd derivative of the position function. 

Thus, given this it shouldn't be too surprising that whether the position function of an object is specified by the vector function  r→(t) then the velocity and acceleration of the object is illustrated by,

v (t) = r'(t)

a (t) = r'' (t)

Note: The velocity and acceleration are as well going to be vectors also.

In the study of the motion of objects the acceleration is frequently broken up into a tangential component, aT, and the normal component denoted as aN.  The tangential component is the part or element of the acceleration which is tangential to the curve and the normal component is the part of the acceleration which is normal or orthogonal to the curve.  If we do this we can write down the acceleration as,

a = aT T+ aNN

where T and N stands for the unit tangent and unit normal for the position function.

If we illustrate v = ||v (t)|| then the tangential and normal components of the acceleration are specified by,  

aT = v' =r' (t).r''(t) /(||r' (t)||)

aN = kv2 = ||?r' (t) *r" (t)|| / ||r' (t)||

in which k is the curvature for the position function.

There are two (2) formulas to employ here for each component of the acceleration and when the second formula may seem excessively complicated it is frequently the easier of the two.  In the tangential component, v, might be messy and calculating the derivative may be unpleasant.  In the normal component we will previously be computing both of these quantities in order to get the curvature and thus the second formula in this case is certainly the easier of the two.


Related Discussions:- Velocity and acceleration - three dimensional space

Angles, how to measure missing angle of an adjacent angle

how to measure missing angle of an adjacent angle

Find the sum of all 3 digit numbers which leave remainder 3, Find the sum o...

Find the sum of all 3 digit numbers which leave remainder 3 when divided by 5. Ans:    103, 108..........998   a + (n-1)d = 998

Multiply, 37x7= multiply answer it.

37x7= multiply answer it.

Find out the value of n element of a set, A set consists of (2n+1) elements...

A set consists of (2n+1) elements. If the number of subsets of this set which consist of at most n elements is 8192. Find out the value of n. Ans: The following set has (2n + 1

Calculate the quarterly premium of a pension policy, You plan to retire whe...

You plan to retire when you are 65th years old.  You are now 25 years old.  You plan to buy a pension annuity that will pay you $100,000 per year starting one year after you turn 6

What is the difference in the two low temperatures, The low temperature in ...

The low temperature in Anchorage, Alaska present was -4°F. The low temperature in Los Angeles, California was 63°F. What is the difference in the two low temperatures? Visualiz

MATH, I don''t understand so what is 3 (8-x);24-15

I don''t understand so what is 3 (8-x);24-15

Find out the different strategies of multiplications, 1. Give some Class 4 ...

1. Give some Class 4 children around you problems like 15 x 6 to do dentally. Interact with them to find out the different strategies they use for doing it, and note these down.

What is sherman''s pulse rate in beats per minute, Sherman took his pulse f...

Sherman took his pulse for 10 seconds and counted 11 beats. What is Sherman's pulse rate in beats per minute? A 10 second count is 1/6 of a minute. To find out the number of be

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd