Velocity and acceleration - three dimensional space, Mathematics

Assignment Help:

Velocity and Acceleration - Three Dimensional Space

In this part we need to take a look at the velocity and acceleration of a moving object.   

From Calculus I we are familiar with that given the position function of an object that the velocity of the object is the 1st derivative of the position function and the acceleration of the object is the 2nd derivative of the position function. 

Thus, given this it shouldn't be too surprising that whether the position function of an object is specified by the vector function  r→(t) then the velocity and acceleration of the object is illustrated by,

v (t) = r'(t)

a (t) = r'' (t)

Note: The velocity and acceleration are as well going to be vectors also.

In the study of the motion of objects the acceleration is frequently broken up into a tangential component, aT, and the normal component denoted as aN.  The tangential component is the part or element of the acceleration which is tangential to the curve and the normal component is the part of the acceleration which is normal or orthogonal to the curve.  If we do this we can write down the acceleration as,

a = aT T+ aNN

where T and N stands for the unit tangent and unit normal for the position function.

If we illustrate v = ||v (t)|| then the tangential and normal components of the acceleration are specified by,  

aT = v' =r' (t).r''(t) /(||r' (t)||)

aN = kv2 = ||?r' (t) *r" (t)|| / ||r' (t)||

in which k is the curvature for the position function.

There are two (2) formulas to employ here for each component of the acceleration and when the second formula may seem excessively complicated it is frequently the easier of the two.  In the tangential component, v, might be messy and calculating the derivative may be unpleasant.  In the normal component we will previously be computing both of these quantities in order to get the curvature and thus the second formula in this case is certainly the easier of the two.


Related Discussions:- Velocity and acceleration - three dimensional space

Trignometery., using the formula sin A =under root 1+ cos2A /2 . find value...

using the formula sin A =under root 1+ cos2A /2 . find value of 30 degree, it is being given that cos 60 degree =1/2.

Functions, find the derived functions

find the derived functions

Tests for relative minimum, Tests for relative minimum For a relative ...

Tests for relative minimum For a relative minimum point there are two tests: i.The first derivative, which is (dy)/(dx)  = f´(x) = 0 ii.The second derivative, which i

Find the probability, Q. Suppose Jessica has 10 pairs of shorts and 5 pair...

Q. Suppose Jessica has 10 pairs of shorts and 5 pairs of jeans in her drawer. How many ways could she pick out something to wear for the day? What is the probability that she pick

Find the interval of validity, Solve the subsequent IVP and find the interv...

Solve the subsequent IVP and find the interval of validity for the solution. y' + (4/x) y = x 3 y 2 ,       y(2) = - 1,  x > 0 Solution Thus, the first thing that we re

Determine a particular solution to differential equation, Determine a parti...

Determine a particular solution for the subsequent differential equation. y′′ - 4 y′ -12 y = 3e5t + sin(2t) + te4t Solution This example is the purpose that we've been u

Differential equation, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xex} as its fundamental set

Indefinite integrals, Indefinite Integrals : In the past two chapters we'v...

Indefinite Integrals : In the past two chapters we've been given a function, f ( x ) , and asking what the derivative of this function was.  Beginning with this section we are now

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd