Velocity and acceleration - three dimensional space, Mathematics

Assignment Help:

Velocity and Acceleration - Three Dimensional Space

In this part we need to take a look at the velocity and acceleration of a moving object.   

From Calculus I we are familiar with that given the position function of an object that the velocity of the object is the 1st derivative of the position function and the acceleration of the object is the 2nd derivative of the position function. 

Thus, given this it shouldn't be too surprising that whether the position function of an object is specified by the vector function  r→(t) then the velocity and acceleration of the object is illustrated by,

v (t) = r'(t)

a (t) = r'' (t)

Note: The velocity and acceleration are as well going to be vectors also.

In the study of the motion of objects the acceleration is frequently broken up into a tangential component, aT, and the normal component denoted as aN.  The tangential component is the part or element of the acceleration which is tangential to the curve and the normal component is the part of the acceleration which is normal or orthogonal to the curve.  If we do this we can write down the acceleration as,

a = aT T+ aNN

where T and N stands for the unit tangent and unit normal for the position function.

If we illustrate v = ||v (t)|| then the tangential and normal components of the acceleration are specified by,  

aT = v' =r' (t).r''(t) /(||r' (t)||)

aN = kv2 = ||?r' (t) *r" (t)|| / ||r' (t)||

in which k is the curvature for the position function.

There are two (2) formulas to employ here for each component of the acceleration and when the second formula may seem excessively complicated it is frequently the easier of the two.  In the tangential component, v, might be messy and calculating the derivative may be unpleasant.  In the normal component we will previously be computing both of these quantities in order to get the curvature and thus the second formula in this case is certainly the easier of the two.


Related Discussions:- Velocity and acceleration - three dimensional space

Definition of the definite integral , Using the definition of the definite ...

Using the definition of the definite integral calculate the following.                                                             ∫ 0 2  x 2   + 1dx Solution Firstly,

Indices, 4n to the power 3/2 = 8 to the power minus 1/3. find the value of ...

4n to the power 3/2 = 8 to the power minus 1/3. find the value of n.

Distinct eigenvalues, It's now time to do solving systems of differential e...

It's now time to do solving systems of differential equations. We've noticed that solutions to the system, x?' = A x? It will be the form of, x? = ?h e l t Here l and

Example of probability, Example of Probability: Example: By using...

Example of Probability: Example: By using a die, what is the probability of rolling two 3s in a row? Solution: From the previous example, there is a 1/6 chance of

Compute the linear convolution, Compute the linear convolution of the discr...

Compute the linear convolution of the discrete-time signal x(n) ={3, 2, 2,1} and the impulse response function of a filter h(n) = {2, 1, 3} using the DFT and the IDFT.

Proof of constant times a function, Proof of Constant Times a Function: ...

Proof of Constant Times a Function: (cf(x))′ = cf ′(x) It is very easy property to prove using the definition given you a recall, we can factor a constant out of a limit. No

Important points about the alternating series test, Important Points About ...

Important Points About the Alternating Series Test There are a several things to note about this test.  Very first, unlike the Integral Test and the Comparison or Limit Compari

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd