Velocity and acceleration - three dimensional space, Mathematics

Assignment Help:

Velocity and Acceleration - Three Dimensional Space

In this part we need to take a look at the velocity and acceleration of a moving object.   

From Calculus I we are familiar with that given the position function of an object that the velocity of the object is the 1st derivative of the position function and the acceleration of the object is the 2nd derivative of the position function. 

Thus, given this it shouldn't be too surprising that whether the position function of an object is specified by the vector function  r→(t) then the velocity and acceleration of the object is illustrated by,

v (t) = r'(t)

a (t) = r'' (t)

Note: The velocity and acceleration are as well going to be vectors also.

In the study of the motion of objects the acceleration is frequently broken up into a tangential component, aT, and the normal component denoted as aN.  The tangential component is the part or element of the acceleration which is tangential to the curve and the normal component is the part of the acceleration which is normal or orthogonal to the curve.  If we do this we can write down the acceleration as,

a = aT T+ aNN

where T and N stands for the unit tangent and unit normal for the position function.

If we illustrate v = ||v (t)|| then the tangential and normal components of the acceleration are specified by,  

aT = v' =r' (t).r''(t) /(||r' (t)||)

aN = kv2 = ||?r' (t) *r" (t)|| / ||r' (t)||

in which k is the curvature for the position function.

There are two (2) formulas to employ here for each component of the acceleration and when the second formula may seem excessively complicated it is frequently the easier of the two.  In the tangential component, v, might be messy and calculating the derivative may be unpleasant.  In the normal component we will previously be computing both of these quantities in order to get the curvature and thus the second formula in this case is certainly the easier of the two.


Related Discussions:- Velocity and acceleration - three dimensional space

prove area of rhombus on hypotenuse right-angled triangle, Prove that the ...

Prove that the area of a rhombus on the hypotenuse of a right-angled triangle, with one of the angles as 60o, is equal to the sum of the areas of rhombuses with one of their angles

Determine that the following series is convergent or diverge, Determine or ...

Determine or find out if the following series is convergent or divergent. Solution In this example the function we'll use is, f (x) = 1 / (x ln x) This function is

Example of log rules, Example of Log Rules: Y = ½ gt 2 where g = 32 ...

Example of Log Rules: Y = ½ gt 2 where g = 32 Solution: y = 16 t 2 Find y for t = 10 using logs. log y = log 10     (16 t 2 ) log 10 y = log 10 16 + log 10

Precalculus, Find the standard form of the equation of the parabola with a ...

Find the standard form of the equation of the parabola with a vertex at the origin and a focus at (0, -7).

Simultaneous equations, Before we look at simultaneous equations let ...

Before we look at simultaneous equations let us brush up some of the fundamentals. First, we define what is meant by an equation. It is a statement which indicate

The value of m+n, Every point (x,y) on the curve y=log2 3x is transferred t...

Every point (x,y) on the curve y=log2 3x is transferred to a new point by the following translation (x',y')=(x+m,y+n), where m and n are integers. The set of (x',y') form the curve

Brian 100-yard dash time was 2.68 what is the school record, Brian's 100-ya...

Brian's 100-yard dash time was 2.68 seconds more than one school record. Brian's time was 13.4 seconds. What is the school record? The school record is less than Brian's time.

Fractions, I have a log that is 1/3 in mud and the rest of it is 6 meters l...

I have a log that is 1/3 in mud and the rest of it is 6 meters long. How long is the entire log?

Find the equation to the pair of lines - coordinate geometry, 1. Find the n...

1. Find the number of zeroes of the polynomial y = f(x) whose graph is given in figure. 2 Find the circumcentre of the triangle whose vertices are (-2, -3), (-1, 0) and (7,-6).

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd