Velocity and acceleration - three dimensional space, Mathematics

Assignment Help:

Velocity and Acceleration - Three Dimensional Space

In this part we need to take a look at the velocity and acceleration of a moving object.   

From Calculus I we are familiar with that given the position function of an object that the velocity of the object is the 1st derivative of the position function and the acceleration of the object is the 2nd derivative of the position function. 

Thus, given this it shouldn't be too surprising that whether the position function of an object is specified by the vector function  r→(t) then the velocity and acceleration of the object is illustrated by,

v (t) = r'(t)

a (t) = r'' (t)

Note: The velocity and acceleration are as well going to be vectors also.

In the study of the motion of objects the acceleration is frequently broken up into a tangential component, aT, and the normal component denoted as aN.  The tangential component is the part or element of the acceleration which is tangential to the curve and the normal component is the part of the acceleration which is normal or orthogonal to the curve.  If we do this we can write down the acceleration as,

a = aT T+ aNN

where T and N stands for the unit tangent and unit normal for the position function.

If we illustrate v = ||v (t)|| then the tangential and normal components of the acceleration are specified by,  

aT = v' =r' (t).r''(t) /(||r' (t)||)

aN = kv2 = ||?r' (t) *r" (t)|| / ||r' (t)||

in which k is the curvature for the position function.

There are two (2) formulas to employ here for each component of the acceleration and when the second formula may seem excessively complicated it is frequently the easier of the two.  In the tangential component, v, might be messy and calculating the derivative may be unpleasant.  In the normal component we will previously be computing both of these quantities in order to get the curvature and thus the second formula in this case is certainly the easier of the two.


Related Discussions:- Velocity and acceleration - three dimensional space

Vector form of the equation of a line, Vector Form of the Equation of a Lin...

Vector Form of the Equation of a Line We have, → r = → r 0 + t → v = (x 0 ,y 0 ,z 0 ) + t (a, b, c) This is known as the vector form of the equation of a line.  The lo

Pricing styrategies, #questiThe net profit in an appliance department for t...

#questiThe net profit in an appliance department for the spring /sumeer was $20,000 which represented 2% of net sales. Operating expenses total $480,000 find dollar amount of gross

Smith keeps track of poor work, Smith keeps track of poor work. Often on af...

Smith keeps track of poor work. Often on afternoon it is 5%. If he checks 300 of 7500 instruments what is probability he will find less than 20 substandard?

Sin3? = cos2? find the most general values of ?, sin3θ = cos2θ find the mos...

sin3θ = cos2θ find the most general values of θ satisfying the equatios? sinax + cosbx = 0 solve ? Solution)  sin (3x) = sin(2x + x) = sin(2x)cos(x) + cos(2x)sin(x) = 2sin(x)cos(

Correlation and regression, Correlation and Regression Correlation ...

Correlation and Regression Correlation CORRELATION is an important statistical concept which refers to association or interrelationship among variables. The reasons of

Quadratic equation modeling profitability, Sam''s sport''s equipment sells ...

Sam''s sport''s equipment sells footballs. They maximized their profitability last year at (6,4) where x represents employees and P(x) represents profitability. Sam noticed that wh

Counting, how do i count by 45s

how do i count by 45s

Find out the dimensions of the field-optimization, We have to enclose a fie...

We have to enclose a field along with a fence. We contain 500 feet of fencing material & a building is on one side of the field & thus won't require any fencing.  Find out the dime

Conditional probability: dependent events, We can define the conditional pr...

We can define the conditional probability of event A, given that event B occurred when both A and B are dependent events, as the ratio of the number of elements common in both A an

Intervals of validity, I've termed this section as Intervals of Validity si...

I've termed this section as Intervals of Validity since all of the illustrations will involve them. Though, there is many more to this section. We will notice a couple of theorems

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd