Velocity and acceleration - three dimensional space, Mathematics

Assignment Help:

Velocity and Acceleration - Three Dimensional Space

In this part we need to take a look at the velocity and acceleration of a moving object.   

From Calculus I we are familiar with that given the position function of an object that the velocity of the object is the 1st derivative of the position function and the acceleration of the object is the 2nd derivative of the position function. 

Thus, given this it shouldn't be too surprising that whether the position function of an object is specified by the vector function  r→(t) then the velocity and acceleration of the object is illustrated by,

v (t) = r'(t)

a (t) = r'' (t)

Note: The velocity and acceleration are as well going to be vectors also.

In the study of the motion of objects the acceleration is frequently broken up into a tangential component, aT, and the normal component denoted as aN.  The tangential component is the part or element of the acceleration which is tangential to the curve and the normal component is the part of the acceleration which is normal or orthogonal to the curve.  If we do this we can write down the acceleration as,

a = aT T+ aNN

where T and N stands for the unit tangent and unit normal for the position function.

If we illustrate v = ||v (t)|| then the tangential and normal components of the acceleration are specified by,  

aT = v' =r' (t).r''(t) /(||r' (t)||)

aN = kv2 = ||?r' (t) *r" (t)|| / ||r' (t)||

in which k is the curvature for the position function.

There are two (2) formulas to employ here for each component of the acceleration and when the second formula may seem excessively complicated it is frequently the easier of the two.  In the tangential component, v, might be messy and calculating the derivative may be unpleasant.  In the normal component we will previously be computing both of these quantities in order to get the curvature and thus the second formula in this case is certainly the easier of the two.


Related Discussions:- Velocity and acceleration - three dimensional space

Show that a, If the roots of the equation (b-c)x 2 +(c-a)x +(a-b) = 0 are ...

If the roots of the equation (b-c)x 2 +(c-a)x +(a-b) = 0 are equal show that a, b, c are in AP. Ans:    Refer sum No.12 of Q.E. If (b-c)x 2 + (c-a) x + (a-b) x have equ

Prove asymptotic bounds for recursion relations, 1. (‡) Prove asymptotic b...

1. (‡) Prove asymptotic bounds for the following recursion relations. Tighter bounds will receive more marks. You may use the Master Theorem if it applies. 1. C(n) = 3C(n/2) + n

Coordinate geometry, find the points on y axis whose distances from the poi...

find the points on y axis whose distances from the points A(6,7) and B(4,-3) are in the ratio 1:2

Permuation and combination, how many words can be formed from letters of wo...

how many words can be formed from letters of word daughter such that each word contain 2vowles and 3consonant

The mode -measures of central tendency, The mode - It is one of the me...

The mode - It is one of the measures of central tendency. The mode is defined as a value in a frequency distribution that has the highest frequency. Occasionally a single valu

Probability, TWO PERSONS A AND B AGREE TO MEET AT A PLACE BTWEEN 11 TO 12 N...

TWO PERSONS A AND B AGREE TO MEET AT A PLACE BTWEEN 11 TO 12 NOON.  THE FIRST ONE TOARRIVE WAITS FOR 20 MIN AND THEN LEAVE. IF THE TIME OF THIR ARRIVAL BE INDEPENDET AND AT RNDOM,T

Algebra, Tom has five times as many marbles as Jim. together they have 42 m...

Tom has five times as many marbles as Jim. together they have 42 marbles. how many marbles does each has?

The blood pressure over two heart beats, At rest, the human heart beats onc...

At rest, the human heart beats once every second. At the strongest part of the beat, a person's blood pressure peaks at 120mmHg. At the most relaxed part of the beat, a person's bl

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd