Velocity and acceleration - three dimensional space, Mathematics

Assignment Help:

Velocity and Acceleration - Three Dimensional Space

In this part we need to take a look at the velocity and acceleration of a moving object.   

From Calculus I we are familiar with that given the position function of an object that the velocity of the object is the 1st derivative of the position function and the acceleration of the object is the 2nd derivative of the position function. 

Thus, given this it shouldn't be too surprising that whether the position function of an object is specified by the vector function  r→(t) then the velocity and acceleration of the object is illustrated by,

v (t) = r'(t)

a (t) = r'' (t)

Note: The velocity and acceleration are as well going to be vectors also.

In the study of the motion of objects the acceleration is frequently broken up into a tangential component, aT, and the normal component denoted as aN.  The tangential component is the part or element of the acceleration which is tangential to the curve and the normal component is the part of the acceleration which is normal or orthogonal to the curve.  If we do this we can write down the acceleration as,

a = aT T+ aNN

where T and N stands for the unit tangent and unit normal for the position function.

If we illustrate v = ||v (t)|| then the tangential and normal components of the acceleration are specified by,  

aT = v' =r' (t).r''(t) /(||r' (t)||)

aN = kv2 = ||?r' (t) *r" (t)|| / ||r' (t)||

in which k is the curvature for the position function.

There are two (2) formulas to employ here for each component of the acceleration and when the second formula may seem excessively complicated it is frequently the easier of the two.  In the tangential component, v, might be messy and calculating the derivative may be unpleasant.  In the normal component we will previously be computing both of these quantities in order to get the curvature and thus the second formula in this case is certainly the easier of the two.


Related Discussions:- Velocity and acceleration - three dimensional space

Multiple integrals, how to convert multiple integral into polar form and ch...

how to convert multiple integral into polar form and change the limits of itegration

Variation of parameters, In this case we will require deriving a new formul...

In this case we will require deriving a new formula for variation of parameters for systems.  The derivation now will be much simpler than the when we first noticed variation of pa

Dynamical system and differential equations, 1. Discuss lyapunov function t...

1. Discuss lyapunov function theory and how it can be used to prove global assmptotic stability of solutions.(Give an example form natural and engineering sciences.) --- Draw le

Introduction to why learn mathematics, INTRODUCTION : All of us have encou...

INTRODUCTION : All of us have encountered mathematics while growing up. Some of us have grown to like it, and therefore, enjoy. doing it. Some others have developed a lukewarm rel

Take home test, what is 36 percent as a fraction in simplest form

what is 36 percent as a fraction in simplest form

What is exponents values, What is Exponents values? Exponents were inve...

What is Exponents values? Exponents were invented as a quick way to show that you are multiplying a number by itself several times. It's too much trouble to write something

common divisors greater than one, Let R be the relation on Z + defined by...

Let R be the relation on Z + defined by aRb iff gcd(a; b) = 1 (that is, a and b have no common divisors greater than one). Explain whether R is reflexive, irreflexive, symmetri

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd