case 1, R2=(3P)2+(2P)2+2*3*2*P2*cosΘ = 9P2+4P2+12P2cosΘ = 13P2+12P2cosΘ ----->(1)
case 2, (2R)2=(6P)2+(2P)2+2*6*2*P2*cosΘ ; 4R2=36P2+4P2+24P2cosΘ = 40P2+24P2cosΘ ------->(2)
Multiply (1) by 4; 4R2=52P2+48P2cosΘ ------>(3)
(3)-(2) gives, 0=12P2+24P2cosΘ
Therefore, cosΘ = (-1/2) => Θ = cos-1(-1/2) = 120°