Vector function - three dimensional spaces, Mathematics

Assignment Help:

Vector Function

The good way to get an idea of what a vector function is and what its graph act like is to look at an instance.  Thus, consider the following vector function.

874_Vector Function - Three dimensional spaces 3.png

A vector function is a function which takes one or more variables, one in this case, and returns a vector.  Note also that a vector function can be a function of two or more than two variables.  Though, in those cases the graph might no longer be a curve in space.

The vector that the function provides can be a vector in whatever dimension we require it to be.  In the instance above it returns a vector in R2.  While we get to the real subject of this section, equations of lines, we will be using a vector function which returns a vector in R3.

Here now, we want to find out the graph of the vector function above.  To find the graph of our function we'll think of the vector that the vector function returns like a position vector for points on the graph.  Remind that a position vector, say, ¯v = (a,b) is a vector that begins at the origin and ends at the point  (a,b).  

 Thus, to get the graph of a vector function all we require to do is plug in some values of the variable and after that plot the point that corresponds to each position vector we get out of the function and play connect the dots.  Now here are some evaluations for our instance.

603_Vector Function - Three dimensional spaces 2.png

Thus, each of these are position vectors presenting points on the graph of our vector function.  The points,

are all points that lie on the graph of our vector function. 

If we do some other evaluations and plot all the points we obtain the subsequent sketch.

28_Vector Function - Three dimensional spaces 1.png

In this diagram we've included the position vector (in gray and dashed) for various evaluations also the t (above each point) we employed for each evaluation.  It looks like, in this case the graph of the vector equation is in fact the line  y =1.


Related Discussions:- Vector function - three dimensional spaces

Scale Drawing, Model of 180 meter tall building using a scale of 1.5 centim...

Model of 180 meter tall building using a scale of 1.5 centimeters = 3.5 meters. How tall will the model be?

Create a circular table with no restrictions, 1. Four different written dri...

1. Four different written driving tests are administered by a city. One of these tests is selected at random for each applicant for a drivers license. If a group of 2 women and 4 m

General approach of exponential functions, General approach of Exponential ...

General approach of Exponential Functions : Before getting to this function let's take a much more general approach to things. Let's begin with b = 0 , b ≠ 1. Then an exponential f

Example of parametric equations and parametric curves, Draw the parametric ...

Draw the parametric curve for the subsequent set of parametric equations. X = t 2 +t Y=2t-1 -1 t 1 Solution Note that the only dissimilarity here is the exis

Define euler circuit and euler path, Define Euler Circuit and Euler Path.  ...

Define Euler Circuit and Euler Path.  Which of the following graphs have an Euler circuit and Euler path.

If tan2x.tan7x=1 , tan9x = (tan7x + tan2x)/(1 - tan7x*tan2x) here its give...

tan9x = (tan7x + tan2x)/(1 - tan7x*tan2x) here its given 1 - tan2x*tan7x= 0 implies tan9x = infinity since tan9x = (3tan3x - tan^3(3x))/(1 - 3tan^2 (3x)) = infinity implies

Calculate the throughput and link utilization, 4. Two hosts, one on East (h...

4. Two hosts, one on East (host A) and one on the west coast (host B) of the USA are exchanging data. Suppose A is sending a large file to B. The file is split into packets of size

Summation notation, SUMMATION NOTATION Under this section we require to...

SUMMATION NOTATION Under this section we require to do a brief review of summation notation or sigma notation.  We will start out with two integers, n and m, along with n a

Quanitive thinking for decision making, two Indiana state senate candidates...

two Indiana state senate candidates must decide which city to visit the day before the november election. The same four cities are available for both candidates. These cities are l

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd