Vector form of the equation of a line, Mathematics

Assignment Help:

Vector Form of the Equation of a Line

We have,

r =r0 + tv = (x0,y0,z0) + t (a, b, c)

This is known as the vector form of the equation of a line.  The lone part of this equation that is not known is the t.  Note that tv will be a vector which lies along with the line and it tells us how far from the original point that we have to move.  If t is positive we move away from the original point in the direction of v that right in our sketch and if t is negative we move away from the original point in the opposite direction of v that is left in our sketch.  As t changes over all possible values we will totally cover the line.  The following diagram shows this dependence on t of our sketch.

1082_Vector Form of the Equation of a Line.png

There are so many other forms of the equation of a line.  To obtain the first alternate form let's start with the vector form and do a slight rewrite.

r = (x0 , y0 , z0) + t (a, b, c)

(x, y, z) = (x0 + ta, y0 + tb, z0 +tc)

The just one way for two vectors to be equal is for the components to be equal. In another words,

x= x0 + ta

y= y0 + tb

z = z0 +tc

The above set of equations is known as the parametric form of the equation of a line. 

Note: also that this is really nothing more than an extension of the parametric equations we've seen earlier. 

The only variation is that we are now working in three dimensions in place of two dimensions.

To obtain a point on the line all we do is pick a t and plug into either form of the line.  In the vector form of the line we obtain a position vector for the point and in the parametric form we acquire the actual coordinates of the point.

There is one more type of the line that we wish to look at.  If we suppose that a, b, and c are all non-zero numbers we are able to solve each of the equations in the parametric form of the line for t.  After that we can set all of them equal to each other as t will be the same number in each.  Doing this provides the following,

(x- x0) / a

= (y-y0)/ b

= (z - z0)/c

This is known as the symmetric equations of the line.


Related Discussions:- Vector form of the equation of a line

Solve the form ax2 - bx - c factoring polynomials, Solve the form ax 2 - b...

Solve the form ax 2 - bx - c factoring polynomials ? This tutorial will help you factor quadratics that look something like this: 2x 2 -3x - 14 (Leading coefficient is

Find the values of k, If the vertices of a triangle are (1, k), (4, -3), (-...

If the vertices of a triangle are (1, k), (4, -3), (-9, 7) and its area is 15 sq units, find the value(s) of k..

Proper fractions, find all the kinds of fraction and give an 10 examples.

find all the kinds of fraction and give an 10 examples.

Calculus with vector functions - three dimensional space, Calculus with Vec...

Calculus with Vector Functions In this part we need to talk concisely on derivatives, limits and integrals of vector functions. Like you will see, these behave in a quite pred

Quantitative Techniques, The following table given the these scores and sal...

The following table given the these scores and sales be nine salesman during last one year in a certain firm: text scores sales (in 000''rupees) 14 31 19

Finance, Determine the value of a $1800 investment after six years at 9.3% ...

Determine the value of a $1800 investment after six years at 9.3% per year, simple interest

Precalculuc, evaluate the expression and write the result in the form a + b...

evaluate the expression and write the result in the form a + bi. I^37

Mensuration, a hollow cone is cut by a plane parallel to the base and the u...

a hollow cone is cut by a plane parallel to the base and the upper portion is removed. if the volume of the frustum obtained is 26/27 of volume of the cone. find at what height abo

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd