Variance, Mathematics

Assignment Help:

Variance

Consider the example of investment opportunities. The expected gains were Rs.114 and Rs.81 respectively. The fact is that an investor also looks at the dispersion before coming to a decision.

501_variance.png

The dispersion of opportunity 1 is far greater than that of opportunity 2. This might alarm the investor.

In this example, it might be worthwhile to compute the coefficient of variation.

For opportunity 1, this works out to be

= (42/114) x 100 = 36.84%

For opportunity 2, this works out to be

= (29.14/81) x 100  = 35.97%

The investor may regard both opportunities homogeneous in this regard and therefore find opportunity 1 more attractive (because of the higher expected returns).

 


Related Discussions:- Variance

Advantages of peer interaction in learning maths, Can you think of some mor...

Can you think of some more advantages of peer interaction and child-to child learning? If you agree that children learn a lot from each other, then how can we maximise such oppo

Calculate the number-average and weight-average molar mass, Three mixtures ...

Three mixtures were prepared with very narrow molar mass distribution polyisoprene samples with molar masses of 8000, 25,000, and 100,000 as indicated below. (a) Equal numbers o

Convergence, Assume that (xn) is a sequence of real numbers and that a, b €...

Assume that (xn) is a sequence of real numbers and that a, b € R with a is not eaqual to 0. (a) If (x n ) converges to x, show that (|ax n + b|) converges to |ax + b|. (b) Give

Line plots, how to you find the difference between different line plots

how to you find the difference between different line plots

What are intervals, A subset of the real line is called as an interval. Int...

A subset of the real line is called as an interval. Intervals are very significant in computing inequalities or in searching domains etc. If there are two numbers a, b € R such tha

Formulas for the volume of this solid, Formulas for the volume of this soli...

Formulas for the volume of this solid V = ∫ b a A ( x) dx          V = ∫ d c A ( y ) dy where, A ( x ) & A ( y ) is the cross-sectional area of the solid. There are seve

Find the sides of hypotenuse , The hypotenuse of a right triangle is 20m. ...

The hypotenuse of a right triangle is 20m. If the difference between the length of the other sides is 4m. Find the sides. Ans: APQ x 2 + y 2 = 202 x 2  + y 2 = 400

Explain the counting principle in maths, Explain the Counting Principle in ...

Explain the Counting Principle in maths? The fundamental counting principle is used when you want to calculate the total number of possible outcomes (or combinations) of an exp

Arc length for parametric equations, Arc Length for Parametric Equations ...

Arc Length for Parametric Equations L = ∫ β α √ ((dx/dt) 2 + (dy/dt) 2 ) dt Note: that we could have utilized the second formula for ds above is we had supposed inste

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd