Variance, Mathematics

Assignment Help:

Variance

Consider the example of investment opportunities. The expected gains were Rs.114 and Rs.81 respectively. The fact is that an investor also looks at the dispersion before coming to a decision.

501_variance.png

The dispersion of opportunity 1 is far greater than that of opportunity 2. This might alarm the investor.

In this example, it might be worthwhile to compute the coefficient of variation.

For opportunity 1, this works out to be

= (42/114) x 100 = 36.84%

For opportunity 2, this works out to be

= (29.14/81) x 100  = 35.97%

The investor may regard both opportunities homogeneous in this regard and therefore find opportunity 1 more attractive (because of the higher expected returns).

 


Related Discussions:- Variance

Trigonmetry, How do I find a bearring using trig?

How do I find a bearring using trig?

Ann, What was last years salary if after a 3% increase the salary is 35,020...

What was last years salary if after a 3% increase the salary is 35,020?

Alternate notation of derivative, Alternate Notation : Next we have to dis...

Alternate Notation : Next we have to discuss some alternate notation for the derivative. The typical derivative notation is the "prime" notation. Though, there is another notation

Matrices, what is the business application of matrices

what is the business application of matrices

Unbounded intervals, Intervals which extend indefinitely in both the ...

Intervals which extend indefinitely in both the directions are known as unbounded intervals. These are written with the aid of symbols +∞  and -  ∞  . The various types

The coordinate axes, Trace the curve y 2 = (x + 2) 2 (x - 6). Clearly sta...

Trace the curve y 2 = (x + 2) 2 (x - 6). Clearly state all the properties you have used for tracing it(e.g., symmetry about the axes, symmetry about the origin, points of interse

Geometry, I need help in my homework

I need help in my homework

Tangents with parametric equations - polar coordinates, Tangents with Param...

Tangents with Parametric Equations In this part we want to find out the tangent lines to the parametric equations given by X= f (t) Y = g (t) To do this let's first r

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd