Utilizes the infinite definition of the limit to prove limit, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

1819_limit39.png

Solution

Let M > 0 be any number and we'll have to choose a δ > 0 so that,

1/ x2  > M                                                  whenever   0 < |x - 0 | <|x|< δ

We'll begin with the left inequality and attempt to get something in the end which looks like the right inequality.  To do this basically we'll solve the left inequality for x and we'll need to recall that √x2  = |x| .  Hence, here's that work.

1/x2  > M ⇒     x2  <  1/M ⇒    |x| <     1/√M

Thus, it looks like we can select δ =1/√M       .  All we have to do now is verify this guess.

Let M > 0 be any number, select δ =1/√M and suppose that 0 < |x| <1/√M   .

We tried to illustrate that our supposition satisfied the left inequality through working with it directly.  Though, in this, the function and our supposition on x that we've got in fact will make this easier to begin with the supposition on x and illustrates that we can get the left inequality out of that.  Note as well that this is being done this way mostly due to the function that we're working along with and not due to the type of limit that we've got.

Doing this we get ,

|x| <     1/√M              

|x| 2<    1/M                                                  square both sides

x2  <     1/M                                               acknowledge that |x| 2 2

1/x2 >M                                                   solve for x2

Thus, we've managed to illustrate that,

1/ x2 > M                   whenever           0 < |x - 0 | < 1/√M              

and thus by the definition of the limit we have,

1830_limit40.png

For our following set of limit definitions let's look at the two definitions for limits at infinity. Again, we require one for a limit at plus infinity & another for negative infinity.


Related Discussions:- Utilizes the infinite definition of the limit to prove limit

Standardizing a random variable, Standardizing a Random Variable       ...

Standardizing a Random Variable       If X is a random variable with E(X) = m and V(X) = s 2 , then Y = (X – m)/ s is a random variable with mean 0 and standard deviatio

Ratio, the ratio of dogs to cats is 2 to 9.if there are 10 dogs how many ca...

the ratio of dogs to cats is 2 to 9.if there are 10 dogs how many cats are there?

#title.square footage, The area of a rectangular yard is 480 square feet. T...

The area of a rectangular yard is 480 square feet. The yard is 24 feet wide. How many feet do I need to fence all four sides?

Geometry, #question.onstruct/draw geometric shapes with specific condition....

#question.onstruct/draw geometric shapes with specific condition.

Distribution of sample distribution or sampling means , Distribution of Sam...

Distribution of Sample distribution or Sampling means A sample of size n is taken from the parent population and mean of the sample is estimated. It is repeated for a number o

#titlefunction.., provide a real-world example or scenario that can be expr...

provide a real-world example or scenario that can be express as a relation that is not a function

Faltings theorem, What is Faltings Theorem? Explain Faltings Theorem

What is Faltings Theorem? Explain Faltings Theorem

Find out function is increasing and decreasing, Find out where the followin...

Find out where the following function is increasing & decreasing. A (t ) = 27t 5 - 45t 4 -130t 3 + 150 Solution As with the first problem first we need to take the

A fire in a building b is reported on telephone, A fire in a building B is ...

A fire in a building B is reported on telephone to two fire stations P and Q, 10km apart from each other on a straight road.  P observes that the fire is at an angle of 60 o to th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd