Utilizes the infinite definition of the limit to prove limit, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

1819_limit39.png

Solution

Let M > 0 be any number and we'll have to choose a δ > 0 so that,

1/ x2  > M                                                  whenever   0 < |x - 0 | <|x|< δ

We'll begin with the left inequality and attempt to get something in the end which looks like the right inequality.  To do this basically we'll solve the left inequality for x and we'll need to recall that √x2  = |x| .  Hence, here's that work.

1/x2  > M ⇒     x2  <  1/M ⇒    |x| <     1/√M

Thus, it looks like we can select δ =1/√M       .  All we have to do now is verify this guess.

Let M > 0 be any number, select δ =1/√M and suppose that 0 < |x| <1/√M   .

We tried to illustrate that our supposition satisfied the left inequality through working with it directly.  Though, in this, the function and our supposition on x that we've got in fact will make this easier to begin with the supposition on x and illustrates that we can get the left inequality out of that.  Note as well that this is being done this way mostly due to the function that we're working along with and not due to the type of limit that we've got.

Doing this we get ,

|x| <     1/√M              

|x| 2<    1/M                                                  square both sides

x2  <     1/M                                               acknowledge that |x| 2 2

1/x2 >M                                                   solve for x2

Thus, we've managed to illustrate that,

1/ x2 > M                   whenever           0 < |x - 0 | < 1/√M              

and thus by the definition of the limit we have,

1830_limit40.png

For our following set of limit definitions let's look at the two definitions for limits at infinity. Again, we require one for a limit at plus infinity & another for negative infinity.


Related Discussions:- Utilizes the infinite definition of the limit to prove limit

Articulate reasons and construct arguments, By such interactions children l...

By such interactions children learn to articulate reasons and construct arguments. When a child is exposed to several interactions of this kind, she gradually develops the ability

Multiply the polynomials, Multiply following. (a) (4x 2 -x)(6-3x) (b)...

Multiply following. (a) (4x 2 -x)(6-3x) (b) (2x+6) 2 Solution  (a) (4x 2 - x )(6 - 3x ) Again we will only FOIL this one out. (4x 2  - x )(6 - 3x) = 24x 2 -

Statistics Assignment, I need help in assignment of stats? Please give me a...

I need help in assignment of stats? Please give me assist in my stats exam.

Find out if the following series converges or diverges, Determine or find o...

Determine or find out if the following series converges or diverges.  If it converges find out its value. Solution We first require the partial sums for this series.

Assignment, hi,i want know about Assignment work..

hi,i want know about Assignment work..

Seriation to developing pre-number concepts, Seriation :  You have read ab...

Seriation :  You have read about a preschooler's ability to order. Ordering a set of objects means to arrange them in a sequence according to some rule. This arrangement could be

Dividing whole numbers, Dividing Whole Numbers: Example: Divide 3...

Dividing Whole Numbers: Example: Divide 347 by 5. Solution:                      Beginning from the left of the dividend, the divisor is divided into the

Translating word phrases into algebraic expressions, How do I solve this pr...

How do I solve this problem: Manuel is a cross-country runner for his school’s team. He jogged along the perimeter of a rectangular field at his school. The track is a rectangle th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd