Utilizes the infinite definition of the limit to prove limit, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

1819_limit39.png

Solution

Let M > 0 be any number and we'll have to choose a δ > 0 so that,

1/ x2  > M                                                  whenever   0 < |x - 0 | <|x|< δ

We'll begin with the left inequality and attempt to get something in the end which looks like the right inequality.  To do this basically we'll solve the left inequality for x and we'll need to recall that √x2  = |x| .  Hence, here's that work.

1/x2  > M ⇒     x2  <  1/M ⇒    |x| <     1/√M

Thus, it looks like we can select δ =1/√M       .  All we have to do now is verify this guess.

Let M > 0 be any number, select δ =1/√M and suppose that 0 < |x| <1/√M   .

We tried to illustrate that our supposition satisfied the left inequality through working with it directly.  Though, in this, the function and our supposition on x that we've got in fact will make this easier to begin with the supposition on x and illustrates that we can get the left inequality out of that.  Note as well that this is being done this way mostly due to the function that we're working along with and not due to the type of limit that we've got.

Doing this we get ,

|x| <     1/√M              

|x| 2<    1/M                                                  square both sides

x2  <     1/M                                               acknowledge that |x| 2 2

1/x2 >M                                                   solve for x2

Thus, we've managed to illustrate that,

1/ x2 > M                   whenever           0 < |x - 0 | < 1/√M              

and thus by the definition of the limit we have,

1830_limit40.png

For our following set of limit definitions let's look at the two definitions for limits at infinity. Again, we require one for a limit at plus infinity & another for negative infinity.


Related Discussions:- Utilizes the infinite definition of the limit to prove limit

5th grade, 6 and 3/8 minus 1 and 3/4

6 and 3/8 minus 1 and 3/4

Mensuration, A palm tree of heights 25m is broken by storm in such a way th...

A palm tree of heights 25m is broken by storm in such a way that its top touches the ground at a distance of 5m from its root,but is not separated from the tree.Find the height at

Application of linear equations, Application of Linear Equations We ar...

Application of Linear Equations We are going to talk about applications to linear equations.  Or, put in other terms, now we will start looking at story problems or word probl

Integers, hi i would like to ask you what is the answer for [-9]=[=5] grade...

hi i would like to ask you what is the answer for [-9]=[=5] grade 7

Functions, the function g is defined as g:x 7-4x find the number k such tha...

the function g is defined as g:x 7-4x find the number k such that kf(-8)=f- 3/2

Three set problems, In a class,there are 174 students in form three,86 stud...

In a class,there are 174 students in form three,86 students play table tennis,84 play football and 94 play volleyball,30 play table tennis and volleyball,34 play volleyball and foo

Trigonometry, explain the formular for finding trigonometry

explain the formular for finding trigonometry

Solid geometry, what is solid geometry and uses of solid geometry

what is solid geometry and uses of solid geometry

Repeated eigenvalues, It is the last case that we require to take a look at...

It is the last case that we require to take a look at. During this section we are going to look at solutions to the system, x?' = A x? Here the eigenvalues are repeated eigen

Determine the measure of the vertex angle, Determine the measure of the ver...

Determine the measure of the vertex angle of the isosceles triangle. a. 34° b. 16° c. 58° d. 112° d. Simply substitute x = 34 into the equation for the vertex angle,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd