Utilizes the infinite definition of the limit to prove limit, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

1819_limit39.png

Solution

Let M > 0 be any number and we'll have to choose a δ > 0 so that,

1/ x2  > M                                                  whenever   0 < |x - 0 | <|x|< δ

We'll begin with the left inequality and attempt to get something in the end which looks like the right inequality.  To do this basically we'll solve the left inequality for x and we'll need to recall that √x2  = |x| .  Hence, here's that work.

1/x2  > M ⇒     x2  <  1/M ⇒    |x| <     1/√M

Thus, it looks like we can select δ =1/√M       .  All we have to do now is verify this guess.

Let M > 0 be any number, select δ =1/√M and suppose that 0 < |x| <1/√M   .

We tried to illustrate that our supposition satisfied the left inequality through working with it directly.  Though, in this, the function and our supposition on x that we've got in fact will make this easier to begin with the supposition on x and illustrates that we can get the left inequality out of that.  Note as well that this is being done this way mostly due to the function that we're working along with and not due to the type of limit that we've got.

Doing this we get ,

|x| <     1/√M              

|x| 2<    1/M                                                  square both sides

x2  <     1/M                                               acknowledge that |x| 2 2

1/x2 >M                                                   solve for x2

Thus, we've managed to illustrate that,

1/ x2 > M                   whenever           0 < |x - 0 | < 1/√M              

and thus by the definition of the limit we have,

1830_limit40.png

For our following set of limit definitions let's look at the two definitions for limits at infinity. Again, we require one for a limit at plus infinity & another for negative infinity.


Related Discussions:- Utilizes the infinite definition of the limit to prove limit

Index shift - sequences and series, Index Shift - Sequences and Series ...

Index Shift - Sequences and Series The main idea behind index shifts is to start a series at a dissimilar value for whatever the reason (and yes, there are legitimate reasons

Formula to calculate the surface area of basketball, Keith wants to know th...

Keith wants to know the surface area of a basketball. Which formula will he use? The surface area of a sphere is four times π times the radius squared.

Vectors, A plane is flying at 200 mph with a heading of 45degrees and encou...

A plane is flying at 200 mph with a heading of 45degrees and encounters a wind mph from the west. What is the velocity and heading?

Solid, The lateral edge of a pyramidal church spire is 61feet.Each side of ...

The lateral edge of a pyramidal church spire is 61feet.Each side of its octagonal base is 22feet. What will be the cost of painting the spire at 2.5 cents a square foot

Possible outcome of a coin - probability based question, A coin is tossed t...

A coin is tossed twice and the four possible outcomes are assumed to be equally likely. If A is the event,  both head and tail have appeared , and B be the event at most one tail i

Example of communicating the meaning of addition, Ms. Mehta teaches in a go...

Ms. Mehta teaches in a government primary school in Delhi. The children who come to her in Class 1 are familiar with a few numbers. At the beginning of the session, she asks the ch

Free - undamped vibrations, It is the simplest case which we can consider. ...

It is the simplest case which we can consider. Unforced or free vibrations sense that F(t) = 0 and undamped vibrations implies that g = 0. Under this case the differential equation

Compute the total and annual return on the investment, 1. Calculate the ann...

1. Calculate the annual interest that you will receive on the described bond-A $500 Treasury bond with a current yield of 4 .2% that is quoted at 106 points? 2. Compute the tota

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd