Utilizes the definition of the limit to prove the given limi, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

Solution

In this case both L & a are zero.  So, let ε < 0 is any number.  Don't worry regarding what the number is, ε is only some arbitrary number.   Now in according to the definition of the limit, if this limit is to be true we will have to determine some other number δ > 0 so that the following will be true.

|x2 - 0| < ε               whenever             0< |x-0|< δ

Or upon simplifying things we required,

                |x2   |< ε                whenever            0<|x|<0

Often the way to go through these is to begin with the left inequality & do a little simplification and distinguish if that recommend a choice for δ .  We'll begin by bringing the exponent out of the absolute value bars & then taking the square root of both sides.

                                |x|2   < ε   ⇒  |x| <√ ε

Now, the results of this simplification looks an awful lot like 0 <|x|< ε  along with the exception of the " 0 < " part. Missing that though isn't a problem; this is just telling us that we can't take x = 0 .  Thus, it looks like if we choose δ =√ ε .we have to get what we want.

We'll next have to verify that our choice of δ will give us what we desire, i.e.,

  |x|2   < ε         ⇒  0< |x| <√ ε

Verification is actually pretty much the similar work that we did to get our guess.  Firstly, let's again let ε < 0 be any number and then select δ =√ ε.  Now, suppose that 0 <| x | <√ ε.  We have to illustrates that by selecting x to satisfy this we will obtain,

                                                    |x2|   < ε

To begin the verification process we'll start with | x2| and then first strip out the exponent from the absolute values. Once it is done we'll employ our assumption on x, namely that  |x| < ε. Doing ball this gives,

|x2|   =|x| 2           strip exponent out of absolute value bars

      < (√ ε)2        use the assumption that    |x|   < ε

        = ε            simplify

Or, upon taking the middle terms out, if we suppose that 0 < |x |<√ ε .then we will get,

                                          |x2|   < ε

and this is accurately what we required to show.

Thus, just what have we done?  We've illustrated that if we choose ε >0 then we can determine a δ> 0  so that we have,

                                                         |x2 - 0 |< ε

and according to our definition it means that,

1737_limit31.png


Related Discussions:- Utilizes the definition of the limit to prove the given limi

Divergence test - sequences and series, Divergence Test Once again...

Divergence Test Once again, do NOT misuse this test.  This test only says that a series is definite to diverge if the series terms do not go to zero in the limit.  If the

Quantitative Techniques, You are given that the total frequency is 900 and ...

You are given that the total frequency is 900 and the median 100.48. From the following frequency distribution, find the class frequencies that are missing. Intelligence No. of Int

#permutation, #The digits 1,2,3,4and 5 are arranged in random order,to form...

#The digits 1,2,3,4and 5 are arranged in random order,to form a five-digit number. Find the probability that the number is a. an odd number. b.less than 23,000

Determine the average bit rate - huffman codebook, 1. Consider a source wi...

1. Consider a source with 4 symbols {a,b,c,d}. The probability of the 4 symbols are P(a)=0.4, p(b) = 0.1, p(c)=0.2, p(d)= 0.3. a. Design a Huffman codebook for these symbols.

Consumer behavior, explain big 5 ppersonality model, suggest thier target m...

explain big 5 ppersonality model, suggest thier target market and one marketing strategiy for each .

What day?, together, pearl and harvey are going to visit their aunt on sund...

together, pearl and harvey are going to visit their aunt on sunday. If Pearl visits their aunt every 6 days, while harvey every 8 days, on what day will they visit their aunt toget

Twice a number increased by 11 is equal to 32 less three, Twice a number in...

Twice a number increased by 11 is equal to 32 less than three times the number. Find out the number. Let x = the number. Now translate every part of the sentence. Twice a numb

Mixing problems, Let's start things by searching for a mixing problem.  Pre...

Let's start things by searching for a mixing problem.  Previously we saw these were back in the first order section. In those problems we had a tank of liquid with several kinds of

Factor, 27-125 a power -135a +225a power2

27-125 a power -135a +225a power2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd