Utilizes the definition of the limit to prove the given limi, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

Solution

In this case both L & a are zero.  So, let ε < 0 is any number.  Don't worry regarding what the number is, ε is only some arbitrary number.   Now in according to the definition of the limit, if this limit is to be true we will have to determine some other number δ > 0 so that the following will be true.

|x2 - 0| < ε               whenever             0< |x-0|< δ

Or upon simplifying things we required,

                |x2   |< ε                whenever            0<|x|<0

Often the way to go through these is to begin with the left inequality & do a little simplification and distinguish if that recommend a choice for δ .  We'll begin by bringing the exponent out of the absolute value bars & then taking the square root of both sides.

                                |x|2   < ε   ⇒  |x| <√ ε

Now, the results of this simplification looks an awful lot like 0 <|x|< ε  along with the exception of the " 0 < " part. Missing that though isn't a problem; this is just telling us that we can't take x = 0 .  Thus, it looks like if we choose δ =√ ε .we have to get what we want.

We'll next have to verify that our choice of δ will give us what we desire, i.e.,

  |x|2   < ε         ⇒  0< |x| <√ ε

Verification is actually pretty much the similar work that we did to get our guess.  Firstly, let's again let ε < 0 be any number and then select δ =√ ε.  Now, suppose that 0 <| x | <√ ε.  We have to illustrates that by selecting x to satisfy this we will obtain,

                                                    |x2|   < ε

To begin the verification process we'll start with | x2| and then first strip out the exponent from the absolute values. Once it is done we'll employ our assumption on x, namely that  |x| < ε. Doing ball this gives,

|x2|   =|x| 2           strip exponent out of absolute value bars

      < (√ ε)2        use the assumption that    |x|   < ε

        = ε            simplify

Or, upon taking the middle terms out, if we suppose that 0 < |x |<√ ε .then we will get,

                                          |x2|   < ε

and this is accurately what we required to show.

Thus, just what have we done?  We've illustrated that if we choose ε >0 then we can determine a δ> 0  so that we have,

                                                         |x2 - 0 |< ε

and according to our definition it means that,

1737_limit31.png


Related Discussions:- Utilizes the definition of the limit to prove the given limi

Convex rectilinear figure, the sum of the interior angles of a convex recti...

the sum of the interior angles of a convex rectilinear figure is equal to sum of the exterior angles. then the number of sides is

Determine the critical points, Assume that the amount of money in a bank ac...

Assume that the amount of money in a bank account after t years is specified by, Find out the minimum & maximum amount of money in the account throughout the first 10 years

Mathematical statements are unambiguous- nature of math, Mathematical State...

Mathematical Statements Are Unambiguous :  Consider any mathematical concept that you're familiar with, say, a sphere. The definition of a sphere is clear and precise. Given any o

How far is that person from the starting point, A person travels 10 miles d...

A person travels 10 miles due north, 6 miles due west, 4 miles due north, and 12 miles due east. How far is that person from the initail state? a. 23 miles northeast b. 13 mi

3-d coordinate system - three dimensional spaces, The 3-D Coordinate System...

The 3-D Coordinate System We will start the chapter off with a quite brief discussion introducing the 3-D coordinate system and the conventions that we will be utilizing.  We

Saxon math, what is the are of a square that is 2 inches long and 2 inches...

what is the are of a square that is 2 inches long and 2 inches wide?

Example of convergent or divergent - comparison test, Determine if the subs...

Determine if the subsequent series is convergent or divergent. Solution As the cosine term in the denominator doesn't get too large we can suppose that the series term

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd