Utilizes the definition of the limit to prove the given limi, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

Solution

In this case both L & a are zero.  So, let ε < 0 is any number.  Don't worry regarding what the number is, ε is only some arbitrary number.   Now in according to the definition of the limit, if this limit is to be true we will have to determine some other number δ > 0 so that the following will be true.

|x2 - 0| < ε               whenever             0< |x-0|< δ

Or upon simplifying things we required,

                |x2   |< ε                whenever            0<|x|<0

Often the way to go through these is to begin with the left inequality & do a little simplification and distinguish if that recommend a choice for δ .  We'll begin by bringing the exponent out of the absolute value bars & then taking the square root of both sides.

                                |x|2   < ε   ⇒  |x| <√ ε

Now, the results of this simplification looks an awful lot like 0 <|x|< ε  along with the exception of the " 0 < " part. Missing that though isn't a problem; this is just telling us that we can't take x = 0 .  Thus, it looks like if we choose δ =√ ε .we have to get what we want.

We'll next have to verify that our choice of δ will give us what we desire, i.e.,

  |x|2   < ε         ⇒  0< |x| <√ ε

Verification is actually pretty much the similar work that we did to get our guess.  Firstly, let's again let ε < 0 be any number and then select δ =√ ε.  Now, suppose that 0 <| x | <√ ε.  We have to illustrates that by selecting x to satisfy this we will obtain,

                                                    |x2|   < ε

To begin the verification process we'll start with | x2| and then first strip out the exponent from the absolute values. Once it is done we'll employ our assumption on x, namely that  |x| < ε. Doing ball this gives,

|x2|   =|x| 2           strip exponent out of absolute value bars

      < (√ ε)2        use the assumption that    |x|   < ε

        = ε            simplify

Or, upon taking the middle terms out, if we suppose that 0 < |x |<√ ε .then we will get,

                                          |x2|   < ε

and this is accurately what we required to show.

Thus, just what have we done?  We've illustrated that if we choose ε >0 then we can determine a δ> 0  so that we have,

                                                         |x2 - 0 |< ε

and according to our definition it means that,

1737_limit31.png


Related Discussions:- Utilizes the definition of the limit to prove the given limi

Pre calculus , use the point to generate a cosine function that models the ...

use the point to generate a cosine function that models the sound wave. Name the amplitude Name the period Name the phase shift name the vertical shift Write the equation for the

Example of factoring quadratic polynomials, Factor following polynomials. ...

Factor following polynomials.                               x 2 + 2x -15 Solution x 2 +2x -15 Okay since the first term is x 2 we know that the factoring has to ta

Nun, how do you identify area ??

how do you identify area ??

Find the distance between these two cities, Memphis, Tennessee, and New Orl...

Memphis, Tennessee, and New Orleans, Louisiana, lie approximately on the same meridian. Memphis has latitude 35°N and New Orleans has latitude 30°N. Find the distance between these

Ordinary differential equations, Give me the power series solution of Halm'...

Give me the power series solution of Halm''s differential equation

Simple harmonic motion, prove that the composition of two simple harmonic o...

prove that the composition of two simple harmonic of the same period and in the same straight line is also a simple harmonic motion of the same period.

Differentiate hyperbolic functions, Differentiate following functions. (...

Differentiate following functions. (a)  f ( x ) = 2 x 5 cosh x (b) h (t ) = sinh t / t + 1 Solution (a) f ′ ( x ) = 10x 4 cosh x + 2x 5 sinh x (b) h′ (t ) = (t

Equations, At a bakery the cost of 30 experts is 45$. Write an equation tha...

At a bakery the cost of 30 experts is 45$. Write an equation that shows the cost of 45 cookies

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd