Utilizes the definition of the limit to prove the given limi, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

Solution

In this case both L & a are zero.  So, let ε < 0 is any number.  Don't worry regarding what the number is, ε is only some arbitrary number.   Now in according to the definition of the limit, if this limit is to be true we will have to determine some other number δ > 0 so that the following will be true.

|x2 - 0| < ε               whenever             0< |x-0|< δ

Or upon simplifying things we required,

                |x2   |< ε                whenever            0<|x|<0

Often the way to go through these is to begin with the left inequality & do a little simplification and distinguish if that recommend a choice for δ .  We'll begin by bringing the exponent out of the absolute value bars & then taking the square root of both sides.

                                |x|2   < ε   ⇒  |x| <√ ε

Now, the results of this simplification looks an awful lot like 0 <|x|< ε  along with the exception of the " 0 < " part. Missing that though isn't a problem; this is just telling us that we can't take x = 0 .  Thus, it looks like if we choose δ =√ ε .we have to get what we want.

We'll next have to verify that our choice of δ will give us what we desire, i.e.,

  |x|2   < ε         ⇒  0< |x| <√ ε

Verification is actually pretty much the similar work that we did to get our guess.  Firstly, let's again let ε < 0 be any number and then select δ =√ ε.  Now, suppose that 0 <| x | <√ ε.  We have to illustrates that by selecting x to satisfy this we will obtain,

                                                    |x2|   < ε

To begin the verification process we'll start with | x2| and then first strip out the exponent from the absolute values. Once it is done we'll employ our assumption on x, namely that  |x| < ε. Doing ball this gives,

|x2|   =|x| 2           strip exponent out of absolute value bars

      < (√ ε)2        use the assumption that    |x|   < ε

        = ε            simplify

Or, upon taking the middle terms out, if we suppose that 0 < |x |<√ ε .then we will get,

                                          |x2|   < ε

and this is accurately what we required to show.

Thus, just what have we done?  We've illustrated that if we choose ε >0 then we can determine a δ> 0  so that we have,

                                                         |x2 - 0 |< ε

and according to our definition it means that,

1737_limit31.png


Related Discussions:- Utilizes the definition of the limit to prove the given limi

Dumpy level, Hi there, I am doing a math assignment at current, however I a...

Hi there, I am doing a math assignment at current, however I am having trouble with a question about dumpy level, and finding whether the slope of the block will be suitable for th

Formula to computing how much lumber to buy, Audrey is creating a increased...

Audrey is creating a increased flowerbed which is 4.5 ft by 4.5 ft. She requires computing how much lumber to buy. If she requires knowing the distance around the flowerbed, which

Integers, Explain with the help of number line (-6)+(+5)

Explain with the help of number line (-6)+(+5)

What is a function, What is a Function, Anyway? Domain? Range? Next tim...

What is a Function, Anyway? Domain? Range? Next time you're at a fast-food restaurant, take a look at the price list. It may look something like this: • Hamburger.............

Arc length with parametric equations, Arc Length with Parametric Equations ...

Arc Length with Parametric Equations In the earlier sections we have looked at a couple of Calculus I topics in terms of parametric equations.  We now require to look at a para

Triangles, about scalene,equilateral and isosceles.

about scalene,equilateral and isosceles.

Show that the angles subtended at the centre , A circle touches the sides o...

A circle touches the sides of a quadrilateral ABCD at P, Q, R and S respectively. Show that the angles subtended at the centre by a pair of opposite sides are supplementary.

Concrete to abstract-how mathematical ideas grow, Concrete to Abstract :  ...

Concrete to Abstract :  Mathematics, like all human knowledge, grows out of our concrete experiences. Let us take the example of three-dimensional shapes. Think about how you came

Point-slope form, The next special form of the line which we have to look a...

The next special form of the line which we have to look at is the point-slope form of the line. This form is extremely useful for writing the equation of any line.  If we know that

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd