Utilizes the definition of the limit to prove the given limi, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

Solution

In this case both L & a are zero.  So, let ε < 0 is any number.  Don't worry regarding what the number is, ε is only some arbitrary number.   Now in according to the definition of the limit, if this limit is to be true we will have to determine some other number δ > 0 so that the following will be true.

|x2 - 0| < ε               whenever             0< |x-0|< δ

Or upon simplifying things we required,

                |x2   |< ε                whenever            0<|x|<0

Often the way to go through these is to begin with the left inequality & do a little simplification and distinguish if that recommend a choice for δ .  We'll begin by bringing the exponent out of the absolute value bars & then taking the square root of both sides.

                                |x|2   < ε   ⇒  |x| <√ ε

Now, the results of this simplification looks an awful lot like 0 <|x|< ε  along with the exception of the " 0 < " part. Missing that though isn't a problem; this is just telling us that we can't take x = 0 .  Thus, it looks like if we choose δ =√ ε .we have to get what we want.

We'll next have to verify that our choice of δ will give us what we desire, i.e.,

  |x|2   < ε         ⇒  0< |x| <√ ε

Verification is actually pretty much the similar work that we did to get our guess.  Firstly, let's again let ε < 0 be any number and then select δ =√ ε.  Now, suppose that 0 <| x | <√ ε.  We have to illustrates that by selecting x to satisfy this we will obtain,

                                                    |x2|   < ε

To begin the verification process we'll start with | x2| and then first strip out the exponent from the absolute values. Once it is done we'll employ our assumption on x, namely that  |x| < ε. Doing ball this gives,

|x2|   =|x| 2           strip exponent out of absolute value bars

      < (√ ε)2        use the assumption that    |x|   < ε

        = ε            simplify

Or, upon taking the middle terms out, if we suppose that 0 < |x |<√ ε .then we will get,

                                          |x2|   < ε

and this is accurately what we required to show.

Thus, just what have we done?  We've illustrated that if we choose ε >0 then we can determine a δ> 0  so that we have,

                                                         |x2 - 0 |< ε

and according to our definition it means that,

1737_limit31.png


Related Discussions:- Utilizes the definition of the limit to prove the given limi

Calculus, Given f (x) =10x^3 - x^5 , find all intervals(in Interval Notatio...

Given f (x) =10x^3 - x^5 , find all intervals(in Interval Notation) of Concavity and the x-values of all Inflection Points.

How many inches is the smaller dimension of the decreased, A photographer d...

A photographer decides to decrease a picture she took in sequence to fit it within a certain frame. She requires the picture to be one-third of the area of the original. If the ori

How much did he have in savings at the starting, Bill spent 50% of his savi...

Bill spent 50% of his savings on school supplies, and then he spent 50% of what was left on lunch. If he had $6 left after lunch, how much did he have in savings at the starting?

What is the probability that the product xy less than 9, A number x is ...

A number x is selected from the numbers 1,2,3 and then a second number y is randomly selected  from  the  numbers  1,4,9. What  is  the  probability that  the product xy of the two

Solve 4 sin 2 ( t ) - 3 sin ( t /3)= 1, Solve 4 sin 2 ( t ) - 3 sin ( t /...

Solve 4 sin 2 ( t ) - 3 sin ( t /3)= 1 . Solution Before solving this equation let's solve clearly unrelated equation. 4x 2 - 3x = 1  ⇒ 4x 2 - 3x -1 = ( 4x + 1) ( x

Linear programming, what is the advantage of dual linear problem programmin...

what is the advantage of dual linear problem programming when we maximize profit then what is need to minimize cost of the same problem

Calculate the radius of the circle, In the figure, ABCD is a square inside ...

In the figure, ABCD is a square inside a circle with centre O. The Centre of the square coincides with O & the diagonal AC is horizontal of AP, DQ are vertical & AP = 45 cm, DQ = 2

Find the sum-of-products expression for the function, Find the sum-of-produ...

Find the sum-of-products expression for subsequent function,  F (x,y,z) = y + Z‾ Ans: The sum of the product expression for the following function f is DNF (disjunc

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd