Utilizes the definition of the limit to prove the given limi, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

Solution

In this case both L & a are zero.  So, let ε < 0 is any number.  Don't worry regarding what the number is, ε is only some arbitrary number.   Now in according to the definition of the limit, if this limit is to be true we will have to determine some other number δ > 0 so that the following will be true.

|x2 - 0| < ε               whenever             0< |x-0|< δ

Or upon simplifying things we required,

                |x2   |< ε                whenever            0<|x|<0

Often the way to go through these is to begin with the left inequality & do a little simplification and distinguish if that recommend a choice for δ .  We'll begin by bringing the exponent out of the absolute value bars & then taking the square root of both sides.

                                |x|2   < ε   ⇒  |x| <√ ε

Now, the results of this simplification looks an awful lot like 0 <|x|< ε  along with the exception of the " 0 < " part. Missing that though isn't a problem; this is just telling us that we can't take x = 0 .  Thus, it looks like if we choose δ =√ ε .we have to get what we want.

We'll next have to verify that our choice of δ will give us what we desire, i.e.,

  |x|2   < ε         ⇒  0< |x| <√ ε

Verification is actually pretty much the similar work that we did to get our guess.  Firstly, let's again let ε < 0 be any number and then select δ =√ ε.  Now, suppose that 0 <| x | <√ ε.  We have to illustrates that by selecting x to satisfy this we will obtain,

                                                    |x2|   < ε

To begin the verification process we'll start with | x2| and then first strip out the exponent from the absolute values. Once it is done we'll employ our assumption on x, namely that  |x| < ε. Doing ball this gives,

|x2|   =|x| 2           strip exponent out of absolute value bars

      < (√ ε)2        use the assumption that    |x|   < ε

        = ε            simplify

Or, upon taking the middle terms out, if we suppose that 0 < |x |<√ ε .then we will get,

                                          |x2|   < ε

and this is accurately what we required to show.

Thus, just what have we done?  We've illustrated that if we choose ε >0 then we can determine a δ> 0  so that we have,

                                                         |x2 - 0 |< ε

and according to our definition it means that,

1737_limit31.png


Related Discussions:- Utilizes the definition of the limit to prove the given limi

Algebraic models, Establish appropriate algebraic models for each of the fo...

Establish appropriate algebraic models for each of the following sets of data. You can use technology to assist. Plot them on grids and demonstrate how you have established each mo

Parity to De-Skew, Consider the following proposal to deskew a skewed bitst...

Consider the following proposal to deskew a skewed bitstream from a TRNG. Consider the bitstream to be a sequence of groups ot n bits for some n > 2. Take the first n bits, and o

What are mutually exclusive events, Q. What are Mutually Exclusive events? ...

Q. What are Mutually Exclusive events? Mutually Exclusive Events are mutually exclusive if they cannot occur at the same time. For example, if you roll one die, you canno

Rhjuu, Ask questutfjion #Minimum 100 words accepted#

Ask questutfjion #Minimum 100 words accepted#

Minimizing the sum of two distances, The value of y that minimizes the sum ...

The value of y that minimizes the sum of the two distances from (3,5) to (1,y) and from (1,y) to (4,9) can be written as a/b where a and b are coprime positive integers. Find a+b.

Fractions, what is equizilent to 2/5

what is equizilent to 2/5

Properties of cross product - vector, Properties of Cross product If u,...

Properties of Cross product If u, v and w are vectors and c is a number then u → * v → = -v → * w →                                                       (cu → ) * v → =

Word problem, a recipe good for 4 servings require 1/8 tsp. black pepper an...

a recipe good for 4 servings require 1/8 tsp. black pepper and 1/2 tsp. of salt. how much black pepper and how much salt needed for 2 servings?

Quadric surfaces, identify 4 sketch the quadric surfaces

identify 4 sketch the quadric surfaces

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd