Use of asymptotic notation in the study of algorithm, Data Structure & Algorithms

Assignment Help:

Q. What is the need of using asymptotic notation in the study of algorithm? Describe the commonly used asymptotic notations and also give their significance.                                        

Ans:

The running time of the algorithm depends upon the number of characteristics and slight variation in the characteristics varies and affects the running time. The algorithm performance in comparison to alternate algorithm is best described by the order of growth of the running time of the algorithm. Let one algorithm for a problem has time complexity of c3n2 and another algorithm has c1n3 +c2n2 then it can be simply observed that the algorithm with complexity c3n2 will be faster compared to the one with complexity c1n3 +c2n2 for sufficiently larger values of n. Whatever be the value of c1, c2   and c3 there will be an 'n' past which the algorithm with the complexity c3n2 is quite faster than algorithm with complexity c1n3 +c2n2, we refer this n as the breakeven point. It is difficult to determine the correct breakeven point analytically, so asymptotic notation is introduced that describe the algorithm performance in a meaningful and impressive way. These notations describe the behaviour of time or space complexity for large characteristics. Some commonly used asymptotic notations are as follows:

1)      Big oh notation (O): The upper bound for a function 'f' is given by the big oh notation (O). Taking into consideration that 'g' is a function from the non-negative integers to the positive real numbers, we define O(g) as the set of function f such that for a number of real constant c>0 and some of the non negative integers constant n0  , f(n)≤cg(n) for all n≥n0. Mathematically, O(g(n))={f(n): hear exists positive constants such that 0≤f f(n)≤cg(n) for all n, n≥n0} , we say "f is oh of g".

2)      Big Omega notation (O): The lower bound for a function 'f' is given by the big omega notation (O). Considering 'g' is the function from the non-negative integers to the positive real numbers, hear we define O(g) as the set of function f  such that  for a number of real constant c>0 and a number of non negative integers constant n0  , f(n)≥cg(n) for all n≥n0. Mathematically, O(g(n))={f(n): here exists positive constants such that 0≤cg(n) ≤f(n) for all n, n≥n0}.

3)      Big Theta notation (θ):  The upper and lower bound for the function 'f' is given by the big oh notation (θ). Taking 'g' to be the function from the non-negative integers to the positive real numbers, here we define θ(g) as the set of function f  such that  for a number of real constant c1 and c2 >0 and a number of non negative integers constant n0  , c1g(n)≤f f(n)≤c2g(n) for all n≥n0. Mathematically, θ(g(n))={f(n): here exists positive constants c1 and c2 such that c1g(n)≤f f(n)≤c2g(n) for all n, n≥n0} , hence we say "f is oh of g"


Related Discussions:- Use of asymptotic notation in the study of algorithm

Stack, write pseudocode to implement a queue with two stacks

write pseudocode to implement a queue with two stacks

Implementation of stack using linked lists, In the last subsection, we have...

In the last subsection, we have implemented a stack by using an array. While a stack is implemented by using arrays, it suffers from the basic restriction of an array - i.e., its s

space, What is Space complexity of an algorithm? Explain

What is Space complexity of an algorithm? Explain.

Dynamic memory management, How memory is freed using Boundary tag method in...

How memory is freed using Boundary tag method in the context of Dynamic memory management? Boundary Tag Method to free Memory To delete an arbitrary block from the free li

Basic organization of computer system, what happen''s in my computer when ...

what happen''s in my computer when i input any passage

Implement stack using two queues, How To implement stack using two queues ,...

How To implement stack using two queues , analyze the running time of the stack operations ?

Explain in detail about the ruby arrays, Explain in detail about the Ruby a...

Explain in detail about the Ruby arrays Ruby arrays have many interesting and powerful methods. Besides indexing operations which go well beyond those discussed above, arrays h

What is an algorithm, What is an algorithm?  What are the characteristics o...

What is an algorithm?  What are the characteristics of a good algorithm? An algorithm is "a step-by-step process for accomplishing some task'' An algorithm can be given in many

Explain about greedy technique, Explain about greedy technique The  gre...

Explain about greedy technique The  greedy  method  suggests  constructing  a   solution  to  an  optimization  problem   by  a sequence of steps, every expanding a partially c

Construction of a binary tree , Q. Construct a binary tree whose nodes in i...

Q. Construct a binary tree whose nodes in inorder and preorder are written as follows: Inorder : 10, 15, 17, 18, 20, 25, 30, 35, 38, 40, 50 Preorder: 20, 15, 10

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd