Use of asymptotic notation in the study of algorithm, Data Structure & Algorithms

Assignment Help:

Q. What is the need of using asymptotic notation in the study of algorithm? Describe the commonly used asymptotic notations and also give their significance.                                        

Ans:

The running time of the algorithm depends upon the number of characteristics and slight variation in the characteristics varies and affects the running time. The algorithm performance in comparison to alternate algorithm is best described by the order of growth of the running time of the algorithm. Let one algorithm for a problem has time complexity of c3n2 and another algorithm has c1n3 +c2n2 then it can be simply observed that the algorithm with complexity c3n2 will be faster compared to the one with complexity c1n3 +c2n2 for sufficiently larger values of n. Whatever be the value of c1, c2   and c3 there will be an 'n' past which the algorithm with the complexity c3n2 is quite faster than algorithm with complexity c1n3 +c2n2, we refer this n as the breakeven point. It is difficult to determine the correct breakeven point analytically, so asymptotic notation is introduced that describe the algorithm performance in a meaningful and impressive way. These notations describe the behaviour of time or space complexity for large characteristics. Some commonly used asymptotic notations are as follows:

1)      Big oh notation (O): The upper bound for a function 'f' is given by the big oh notation (O). Taking into consideration that 'g' is a function from the non-negative integers to the positive real numbers, we define O(g) as the set of function f such that for a number of real constant c>0 and some of the non negative integers constant n0  , f(n)≤cg(n) for all n≥n0. Mathematically, O(g(n))={f(n): hear exists positive constants such that 0≤f f(n)≤cg(n) for all n, n≥n0} , we say "f is oh of g".

2)      Big Omega notation (O): The lower bound for a function 'f' is given by the big omega notation (O). Considering 'g' is the function from the non-negative integers to the positive real numbers, hear we define O(g) as the set of function f  such that  for a number of real constant c>0 and a number of non negative integers constant n0  , f(n)≥cg(n) for all n≥n0. Mathematically, O(g(n))={f(n): here exists positive constants such that 0≤cg(n) ≤f(n) for all n, n≥n0}.

3)      Big Theta notation (θ):  The upper and lower bound for the function 'f' is given by the big oh notation (θ). Taking 'g' to be the function from the non-negative integers to the positive real numbers, here we define θ(g) as the set of function f  such that  for a number of real constant c1 and c2 >0 and a number of non negative integers constant n0  , c1g(n)≤f f(n)≤c2g(n) for all n≥n0. Mathematically, θ(g(n))={f(n): here exists positive constants c1 and c2 such that c1g(n)≤f f(n)≤c2g(n) for all n, n≥n0} , hence we say "f is oh of g"


Related Discussions:- Use of asymptotic notation in the study of algorithm

Explain th term input and output- pseudocode, Explain th term input and ou...

Explain th term input and output-  Pseudocode Input and output indicated by the use of terms input number, print total, output total, print "result is" x and so on.

Explain thread, Thread By changing the NULL lines in a binary tree to ...

Thread By changing the NULL lines in a binary tree to special links known as threads, it is possible to perform traversal, insertion and deletion without using either a stack

Doubly linked list, How does operations like insertion, deletion occur?

How does operations like insertion, deletion occur?

Properties of a red-black tree, Any binary search tree must contain followi...

Any binary search tree must contain following properties to be called as a red-black tree. 1. Each node of a tree should be either red or black. 2. The root node is always bl

Insertion of element into a linked list, ALGORITHM (Insertion of element in...

ALGORITHM (Insertion of element into a linked list) Step 1 Begin the program Step 2 if the list is empty or any new element comes before the start (head) element, then add t

Sequential files, Data records are stored in some particular sequence e.g.,...

Data records are stored in some particular sequence e.g., order of arrival value of key field etc. Records of sequential file cannot be randomly accessed i.e., to access the n th

Sort list of distinct numbers in ascending order - quicksort, (1) Sort a li...

(1) Sort a list of distinct numbers in ascending order, using the following divide- and-conquer strategy (Quicksort): divide the list of numbers into two lists: one that contains a

A sort which relatively passes by a list, A Sort which relatively passes by...

A Sort which relatively passes by a list to exchange the first element with any element less than it and then repeats with a new first element is called as      Quick sort.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd