Use newtons method to find out an approximation, Mathematics

Assignment Help:

Use Newton's Method to find out an approximation to the solution to cos x = x which lies in the interval [0,2].  Determine the approximation to six decimal places.

Solution

Firstly note that we weren't given an initial guess. However, we were given an interval in which to look.  We will utilize this to get our initial guess. As noted down above the general rule of thumb in these cases is to take the initial approximation to be the midpoint of the interval.  Thus, we'll utilize x0  = 1 as our initial guess.

Next, recall that we ought to have the function in the form f ( x ) = 0 .  Thus, first we rewrite the equation as,

                                                      cos x - x = 0

Now we can write down the general formula for Newton's Method.  Doing this will frequently simplify up the work a little so generally it's not a bad idea to do this.

                                     xn +1    = xn   - (cos x - x /(- sin x -1))

Now let's get the first approximation.

                             x1  = 1 -( cos (1) -1/- sin (1) -1) = 0.7503638679

At this point we have to point out that the phrase "six decimal places" does not mean only get x1 to six decimal places & then stop. Rather than it means that we continue till two successive approximations agree to six decimal places.

Given that stopping condition we obviously have to go at least one step farther.

x 2 = 0.7503638679 - (cos (0.7503638679) - 0.7503638679/- sin (0.7503638679) -1)

           = 0.7391128909

We've got the approximation to 1 decimal place. Let's accomplish another one, leaving the details of the computation to you.

                                           x3  = 0.7390851334

We've got it to three decimal places. We'll require another one.

                                         x4  = 0.7390851332

And now we've got two approximations that agree to 9 decimal places and therefore we can stop. We will suppose that the solution is approximately x4  = 0.7390851332 .


Related Discussions:- Use newtons method to find out an approximation

Postage stamp problem, Explain Postage Stamp Problem solving tehcnique? Wha...

Explain Postage Stamp Problem solving tehcnique? What is Postage Stamp Problem?

Introduction , what states and marketing tasks?

what states and marketing tasks?

Four distinct points on a circle, If (a,1/a), (b,1/b),(c,1/c),(d,1/d) are f...

If (a,1/a), (b,1/b),(c,1/c),(d,1/d) are four distinct points on a circle of radius 4 units then,abcd is equal to??   Ans) As they are of form (x,1/x) let eq of circle be x

Relating addition and subtraction, RELATING ADDITION AND SUBTRACTION :  In...

RELATING ADDITION AND SUBTRACTION :  In the earlier sections we have stressed the fact that to help children understand addition or subtraction, they need to be exposed to various

Properties of dot product - vector, Properties of Dot Product u → • (v...

Properties of Dot Product u → • (v → + w → ) = u → • v → + u → • w →          (cv → ) • w → = v → •(cw → ) = c (v → •w → ) v → • w → = w → • v →

Draw a common graph ( x - 2)2 /9+4(y + 2)2 =1, Graph     ( x - 2) 2 /9+4...

Graph     ( x - 2) 2 /9+4(y + 2) 2  = 1 Solution It is an ellipse. The standard form of the ellipse is                                                         ( x - h

Monotonic, Monotonic, Upper bound and lower bound Given any sequence {a...

Monotonic, Upper bound and lower bound Given any sequence {a n } we have the following terminology: 1.   We call or denote the sequence increasing if a n n+1 for every n.

Properties of vector arithmetic, Properties of Vector Arithmetic If v, ...

Properties of Vector Arithmetic If v, w and u are vectors (each with the same number of components) and a and b are two numbers then we have then following properties. v →

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd