Use newtons method to find out an approximation, Mathematics

Assignment Help:

Use Newton's Method to find out an approximation to the solution to cos x = x which lies in the interval [0,2].  Determine the approximation to six decimal places.

Solution

Firstly note that we weren't given an initial guess. However, we were given an interval in which to look.  We will utilize this to get our initial guess. As noted down above the general rule of thumb in these cases is to take the initial approximation to be the midpoint of the interval.  Thus, we'll utilize x0  = 1 as our initial guess.

Next, recall that we ought to have the function in the form f ( x ) = 0 .  Thus, first we rewrite the equation as,

                                                      cos x - x = 0

Now we can write down the general formula for Newton's Method.  Doing this will frequently simplify up the work a little so generally it's not a bad idea to do this.

                                     xn +1    = xn   - (cos x - x /(- sin x -1))

Now let's get the first approximation.

                             x1  = 1 -( cos (1) -1/- sin (1) -1) = 0.7503638679

At this point we have to point out that the phrase "six decimal places" does not mean only get x1 to six decimal places & then stop. Rather than it means that we continue till two successive approximations agree to six decimal places.

Given that stopping condition we obviously have to go at least one step farther.

x 2 = 0.7503638679 - (cos (0.7503638679) - 0.7503638679/- sin (0.7503638679) -1)

           = 0.7391128909

We've got the approximation to 1 decimal place. Let's accomplish another one, leaving the details of the computation to you.

                                           x3  = 0.7390851334

We've got it to three decimal places. We'll require another one.

                                         x4  = 0.7390851332

And now we've got two approximations that agree to 9 decimal places and therefore we can stop. We will suppose that the solution is approximately x4  = 0.7390851332 .


Related Discussions:- Use newtons method to find out an approximation

Example of inverse matrix, Determine the inverse of the following matrix, i...

Determine the inverse of the following matrix, if it exists. We first form the new matrix through tacking onto the 3 x 3 identity matrix to this matrix.  It is, We

How many multiplication required to calculate matrix product, (a) Assume th...

(a) Assume that A is a m 1 ×m 2 matrix and B is a m 2 ×m 3 matrix. How many multiplications are required to calculate the matrix product AB? (b) Given that A 1 is a 20 × 50 m

Ratio, 2qt :6qt::x :48? help me solve x

2qt :6qt::x :48? help me solve x

Numerical.analysis. , Please, I want to know and study "stability 0n predic...

Please, I want to know and study "stability 0n predictor -corrector method .My gmail is [email protected] heap and kind to me .Thanks for this.

Find the value of delta, Consider the given graph G below. Find δ( G )=__...

Consider the given graph G below. Find δ( G )=_____ , λ( G )= _____ , κ( G )= _____, number of edge-disjoint AF -paths=_____ , and number of vertex-disjoint AF -paths= ______

Evaluate the infinite limits of given limits, Evaluate following limits. ...

Evaluate following limits. Solution Therefore we will taking a look at a couple of one-sided limits in addition to the normal limit here. In all three cases notice

Geometry, Determine the coordinates of the point equidistant from Salt Lake...

Determine the coordinates of the point equidistant from Salt Lake City and Helena

Trignomentry, 128sinpower8=cos8-8cos6+28cos4-56cos2+35

128sinpower8=cos8-8cos6+28cos4-56cos2+35

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd