Use newtons method to find out an approximation, Mathematics

Assignment Help:

Use Newton's Method to find out an approximation to the solution to cos x = x which lies in the interval [0,2].  Determine the approximation to six decimal places.

Solution

Firstly note that we weren't given an initial guess. However, we were given an interval in which to look.  We will utilize this to get our initial guess. As noted down above the general rule of thumb in these cases is to take the initial approximation to be the midpoint of the interval.  Thus, we'll utilize x0  = 1 as our initial guess.

Next, recall that we ought to have the function in the form f ( x ) = 0 .  Thus, first we rewrite the equation as,

                                                      cos x - x = 0

Now we can write down the general formula for Newton's Method.  Doing this will frequently simplify up the work a little so generally it's not a bad idea to do this.

                                     xn +1    = xn   - (cos x - x /(- sin x -1))

Now let's get the first approximation.

                             x1  = 1 -( cos (1) -1/- sin (1) -1) = 0.7503638679

At this point we have to point out that the phrase "six decimal places" does not mean only get x1 to six decimal places & then stop. Rather than it means that we continue till two successive approximations agree to six decimal places.

Given that stopping condition we obviously have to go at least one step farther.

x 2 = 0.7503638679 - (cos (0.7503638679) - 0.7503638679/- sin (0.7503638679) -1)

           = 0.7391128909

We've got the approximation to 1 decimal place. Let's accomplish another one, leaving the details of the computation to you.

                                           x3  = 0.7390851334

We've got it to three decimal places. We'll require another one.

                                         x4  = 0.7390851332

And now we've got two approximations that agree to 9 decimal places and therefore we can stop. We will suppose that the solution is approximately x4  = 0.7390851332 .


Related Discussions:- Use newtons method to find out an approximation

Simplex table, maximize Z=2x+5y+7z, subject to constraints : 3x+2y+4z =0

maximize Z=2x+5y+7z, subject to constraints : 3x+2y+4z =0

Incircle, ab=8cm,bc=6cm,ca=5cm draw an incircle.

ab=8cm,bc=6cm,ca=5cm draw an incircle.

Area of a parallelogram x what is the height in terms of x, The area of a p...

The area of a parallelogram is x 8 . If the base is x 4 , what is the height in terms of x? Since the area of a parallelogram is A = base times height, then the area divided by

Multiple integrals, how to convert multiple integral into polar form and ch...

how to convert multiple integral into polar form and change the limits of itegration

Vectors, A plane is flying at 200 mph with a heading of 45degrees and encou...

A plane is flying at 200 mph with a heading of 45degrees and encounters a wind mph from the west. What is the velocity and heading?

Using pythagorean theorem to determine z, Two cars begin 500 miles apart.  ...

Two cars begin 500 miles apart.  Car A is into the west of Car B and begin driving to the east (that means towards Car B) at 35 mph & at the similar time Car B begin driving south

Describe the introduction to integers, Describe the Introduction to Integer...

Describe the Introduction to Integers ? Integers include the positive and negative whole numbers, such as -4, -3, -2, -1, 0, 1, 2, 3, 4, and so on. A negative number has a "

How does the algorithm work?, How Does The Algorithm Work? Most of us, ...

How Does The Algorithm Work? Most of us, when asked to multiply, say, 35 by 23, write Why do we place the mark x (or 0, or leave a blank) in the second row of the calcul

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd