Use newtons method to find out an approximation, Mathematics

Assignment Help:

Use Newton's Method to find out an approximation to the solution to cos x = x which lies in the interval [0,2].  Determine the approximation to six decimal places.

Solution

Firstly note that we weren't given an initial guess. However, we were given an interval in which to look.  We will utilize this to get our initial guess. As noted down above the general rule of thumb in these cases is to take the initial approximation to be the midpoint of the interval.  Thus, we'll utilize x0  = 1 as our initial guess.

Next, recall that we ought to have the function in the form f ( x ) = 0 .  Thus, first we rewrite the equation as,

                                                      cos x - x = 0

Now we can write down the general formula for Newton's Method.  Doing this will frequently simplify up the work a little so generally it's not a bad idea to do this.

                                     xn +1    = xn   - (cos x - x /(- sin x -1))

Now let's get the first approximation.

                             x1  = 1 -( cos (1) -1/- sin (1) -1) = 0.7503638679

At this point we have to point out that the phrase "six decimal places" does not mean only get x1 to six decimal places & then stop. Rather than it means that we continue till two successive approximations agree to six decimal places.

Given that stopping condition we obviously have to go at least one step farther.

x 2 = 0.7503638679 - (cos (0.7503638679) - 0.7503638679/- sin (0.7503638679) -1)

           = 0.7391128909

We've got the approximation to 1 decimal place. Let's accomplish another one, leaving the details of the computation to you.

                                           x3  = 0.7390851334

We've got it to three decimal places. We'll require another one.

                                         x4  = 0.7390851332

And now we've got two approximations that agree to 9 decimal places and therefore we can stop. We will suppose that the solution is approximately x4  = 0.7390851332 .


Related Discussions:- Use newtons method to find out an approximation

Unconditional and conditional probability, Two events A and B are ind...

Two events A and B are independent events if the occurrence of event A is in no way related to the occurrence or non-occurrence of event B. Likewise for independent

Solve and graph equation of parabola, SOLVE AND GRAPH THE PARABOLA NOTE: W...

SOLVE AND GRAPH THE PARABOLA NOTE: WRITE YOUR SOLUTIONS AND COMPLETE EQUATION OF GRAPH SPOINTS EACH 1. V(0,0) (0.2) P-2 2. V(0,0) E-5,0) P=-5 3. V(4-3) F(4,-2) P=1 4. V-1,5)

Derive the probability distribution of the completion times, Derive the pro...

Derive the probability distribution of the completion times: a. The following probability distributions relate to the completion times, in weeks, T A and T B of two independ

Find the Regular Grammar for the following Regular Expressio, Find the Regu...

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

Mensuration of plane figures, a sail has a spread of canvas as measured 12'...

a sail has a spread of canvas as measured 12'',12'', 15'' and 9'' and it has 90 degrees. Find the area of one side of the sail

Evaluate the area of the shaded region, Evaluate the area of the shaded reg...

Evaluate the area of the shaded region in terms of π. a. 8 - 4π b. 16 - 4π c. 16 - 2π d. 2π- 16 b. The area of the shaded region is same to the area of the squa

Four is added to the quantity two minus the sum of negative, Four is added ...

Four is added to the quantity two minus the sum of negative seven and six. This answer is then multiplied through three. What is the result? This problem translates to the expr

Fractions, How do you add 7/9 + 6/8 + 3/4

How do you add 7/9 + 6/8 + 3/4

Proof of: limq -0 sinq/q = 1 trig limits, Proof of: lim q →0 sin q...

Proof of: lim q →0 sin q / q = 1 This proofs of given limit uses the Squeeze Theorem. Though, getting things set up to utilize the Squeeze Theorem can be a somewha

Example of problems related to applying operations, I had just come back fr...

I had just come back from a very interesting talk arranged by a Mathematics Centre, it was aimed at parents of primary school-going children. They had talked about, and demonstrate

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd