Universality problem, Theory of Computation

Assignment Help:

The Universality Problem is the dual of the emptiness problem: is L(A) = Σ∗?

It can be solved by minor variations of any one of the algorithms for Emptiness or (with a little less work) it can simply be reduced to Emptiness.

Theorem (Universality) The Universality Problem for Regular Languages is decidable.

Proof: L(A) = Σ*⇔ L(A) = ∅. As regular languages are effectively closed under complement we can simply build the DFA for the complement of L(A) and ask if it recognizes the empty language.


Related Discussions:- Universality problem

Find regular grammar : a(a+b)*(ab*+ba*)b, Find the Regular Grammar for the ...

Find the Regular Grammar for the following Regular Expression:                    a(a+b)*(ab*+ba*)b.

Pushdown automator, draw pda for l={an,bm,an/m,n>=0} n is in superscript

draw pda for l={an,bm,an/m,n>=0} n is in superscript

Push down automata, Construct a PDA that accepts { x#y | x, y in {a, b}* su...

Construct a PDA that accepts { x#y | x, y in {a, b}* such that x ? y and xi = yi for some i, 1 = i = min(|x|, |y|) }. For your PDA to work correctly it will need to be non-determin

Fsa as generators, The SL 2 languages are speci?ed with a set of 2-factors...

The SL 2 languages are speci?ed with a set of 2-factors in Σ 2 (plus some factors in {?}Σ and some factors in Σ{?} distinguishing symbols that may occur at the beginning and en

Nfas with e-transitions, We now add an additional degree of non-determinism...

We now add an additional degree of non-determinism and allow transitions that can be taken independent of the input-ε-transitions. Here whenever the automaton is in state 1

Non-regular languages, Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = ...

Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = {q 0 , q 1 , . . . , q n-1 } includes n states. Thinking of the automaton in terms of its transition graph, a string x is recogn

Class of local languages is not closed under union, Both L 1 and L 2 are ...

Both L 1 and L 2 are SL 2 . (You should verify this by thinking about what the automata look like.) We claim that L 1 ∪ L 2 ∈ SL 2 . To see this, suppose, by way of con

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd