Unit circle, Mathematics

Assignment Help:

Unit circle: The unit circle is one of the most valuable tools to come out in trig.  Unluckily, most people don't study it as well.

Below is the unit circle with just the first quadrant filled in is represented. The process the unit circle works is to draw a line from the center of the circle outside corresponding to a given angle. Then notify at the coordinates of the point where the line & the circle intersect. The first coordinate is the cosine of that angle & the second coordinate is the sine of that angle. We've put some of the basic angles along with the coordinates of their intersections on the unit circle.  Hence, from the unit circle below we can illustrates that cos (? /6 ) = √3 /2 and sin (?/6)= 1/2 .

1143_unit circle.png

Keep in mind how the signs of angles work.  If you rotate into a counter clockwise direction the angle is +ve and if you rotate into a clockwise direction the angle is negative.

Remember as well that one complete revolution is 2 ? , thus the positive x-axis can correspond to either an angle of 0 or 2 ? (or 4 ? , or 6 ? , or -2 ? , or -4 ? , etc. based on the direction of rotation). Similarly, the angle ? /6 given angles: (to pick an angle totally at random) can also be any of the

? /6  +2 ? = 13 ?/6  (start at ? /6  then rotate once around counter clockwise)

? /6  + 4 ? = 25 ?/6  (start at ?/6  then rotate around twice counter clockwise)

? /6  -2 ?=11 ?/6 (start at ?/6      then rotate once around clockwise)

? /6  - 4 ? = 23 ?/6   (start at ?/6 then rotate around twice clockwise)

etc.

Actually ?/6 can be any of the given angles  ?/6 + 2 ? n , n = 0, ±1, ± 2, ±  3,.. In this case n refer to the number of complete revolutions you make around the unit circle begining at 6  .  Positive values of n correspond to counter clockwise rotations & -ve values of n correspond to clockwise rotations.

If you know the first quadrant then you can easily get all the other quadrants from the first along with a small application of geometry.


Related Discussions:- Unit circle

The expected monetary value method, The expected monetary value method ...

The expected monetary value method The expected pay off as profit associated with a described combination of act and event is acquired by multiplying the pay off for that act a

Linear equation in two variables., draw the graph of following pair of line...

draw the graph of following pair of linear equation:-2y=4x-6

Evaluate this integral value, The base of a right cylinder is the circle in...

The base of a right cylinder is the circle in the xy -plane with centre O and radius 3 units. A wedge is obtained by cutting this cylinder with the plane through the y -axis in

Duality., advanteges of duality

advanteges of duality

Show that of all right triangles inscribed in a circle, Show that of all ri...

Show that of all right triangles inscribed in a circle, the triangle with maximum perimeter is isosceles.

Mode, What is the median for this problem (55+75+85+100+100)

What is the median for this problem (55+75+85+100+100)

To calculate volume of cylinder which formula is used, Mimi is filling a te...

Mimi is filling a tennis ball can along with water. She wants to know the volume of the cylinder shaped can. Which formula will she use? The volume of a cylinder is π times the

How did rousseau resolve the conflict, How did Rousseau resolve the conflic...

How did Rousseau resolve the conflict between the rights of the individual and the responsibilities of government (the state)? How did the ideas about universal education and socia

Hyperbolic paraboloid- three dimensional space, Hyperbolic Paraboloid- Thre...

Hyperbolic Paraboloid- Three Dimensional Space The equation which is given here is the equation of a hyperbolic paraboloid. x 2 / a 2 - y 2 / b 2 = z/c Here is a dia

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd