Unification - artificial intelligence, Computer Engineering

Assignment Help:

Unification - Artificial intelligence:

We have said that the laws of inference for propositional logic detailed in the previous lecture can also be used in first-order logic. However, we have to clear that a little. One important distinction between propositional and first-order logic is that the latter has predicates with expressions as arguments. So, one explanation we have to form is that we may use the inference lawsas long as the predicates and Arguments match up. That's why, not only do we have to check for the right kinds of sentence before we may carry out a law of inference, we also need to check that the arguments do not prohibit the inference.

For instance, let it in our knowledge base, we have the these two statements:

Knows (john) -> hates(john, X)

Knows(john, marry)

and we need to use the Modus Ponens law to infer something latest. In this case, there is no difficulty, and we may infer that, because john hates everybody  he knows, and he knows Mary, then he should hate Mary, i.e., we may infer that hates(john, mary) is right.

However, let it instead that we had these two sentences:

knows(john,X) -> hates(john, X)

knows(jack, mary)

Here, the predicate names have not altered, but the arguments are handling us back from forming any deductive inference. In the first case above, we might allow the variable X to be instantiated to marry during the assumption, and the constant john before and after the assumption also matched without error. However, in the second case, although we might still instantiate X to marry, we could no longer match john and jack, because they are two dissimilar constants. So we cannot deduce anything for john (or anyone else) from the latter two statements.

The problem here arises from our incapability to make the arguments in knows(john, X) and the arguments in knows(jack, marry) match up. When we may make two predicates match up, we say that we have combined them, and we will look at an algorithm for unifying two predicates (if they can be combined) in this section. Remember that unification acts a part in the way Prolog searches for matches to queries.


Related Discussions:- Unification - artificial intelligence

What is function scope, What is Function scope Function scope: A labe...

What is Function scope Function scope: A label is the only part of identifier that has function scope. A label is declared implicitly by its use in a statement. Label names m

What is system programming, what is system programming? System programm...

what is system programming? System programming is the activity of implementing and designing SPs. System programs that are the standard component of the s/w of most computer

What is sap luw or update transaction, What is SAP LUW or Update Transactio...

What is SAP LUW or Update Transaction? Update transaction (or "SAP LUW") This is a set of updates terminated by an ABAP/4 commit.  A SAP LUW may last much longer than a data

Cascade delete options, Create a relationship among Employee and Sales tabl...

Create a relationship among Employee and Sales tables using Emp No. Enforce referential integrity and select both cascade update and cascade delete options. Save the relationship.

C, "Super ASCII", if it contains the character frequency equal to their asc...

"Super ASCII", if it contains the character frequency equal to their ascii values. String will contain only lower case alphabets (''a''-''z'') and the ascii values will starts from

OR, importance of duality concep? Article Source: http://EzineArticles.co...

importance of duality concep? Article Source: http://EzineArticles.com/4133733

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd