Undamped - forced vibrations, Mathematics

Assignment Help:

We will firstly notice the undamped case. The differential equation under this case is,

mu'' + ku  = F(t)

It is just a non-homogeneous differential equation and we identify how to resolve these. The general solution will be,

u(t) = uc(t) + Up(t)

Here the complementary solution is the solution to the free, undamped vibration case. To determine the particular solution we can use either undetermined coefficients or variation of parameters depending on that we determine easier for a specified forcing function.

There is an exact type of forcing function which we should take a look at as this leads to some interesting results. Let's assume that the forcing function is a simple periodic function of the type,

F(t) = F0 cos(wt)           or F(t) = F0 sin(wt)

For the reasons of this discussion we'll utilize the first one. By using this, the IVP turns into,

mu'' + ku = F0 cos(wt)

As pointed out above, the complementary solution, is

u(t) = c1 cos(w0t)  + c2 sin(w0t)

Here ω0 is the natural frequency.

We will require being careful in finding an exact solution. The purpose for this will be clear if we utilize undetermined coefficients. Along with undetermined coefficients our guess for the types of the particular solution would be as,

UP(t) = A cos(w0t)  + B sin(wt)

Here, this guess will be problems if ω0= ω. If it were to occur the guess for the particular solution is accurately the complementary solution and so we'd require to add in a t. Obviously if we don't have ω0= ω then there will be nothing wrong with the guess.

Therefore, we will require looking at this in two cases.

1.      ω0 ≠ ω

Under this case our initial guess is okay as it won't be the complementary solution. However upon differentiating the guess and plugging this in the differential equation and simplifying we find,

(-m w2A + kA) cos(wt) + (-m w2B + kB) sin(wt) = F0cos(wt)

Setting coefficients equal provides,

cos(wt):           (-m w2 + k)A = F0         => A= F0/(k-mw2)

sin(wt):            (-m w2 + k)B = 0          => B = 0

So, the particular solution is now,

UP(t) = (F0/(k-mw2)) . cos(wt)

= (F0/m((k/m-)w2)) . cos(wt)

= ((F0/m(ω20 - ω2)) cos(ωt)

Remember that we rearranged things a little. Depending upon the form which you'd like the displacement to be here we can have either of the subsequent.

u(t) = c1 cos(w0t)  + c2 sin(w0t) +((F0/m(ω20 - ω2)) cos(ωt)

u(t) = R cos(w0t - d) + ((F0/m(ω20 - ω2)) cos(ωt)

If we utilized the sine form of the forcing function we could determine a same formula.

2. w0 = w

Under this case we will require to add in a t to the guess for the particular solution.

UP(t) = At cos(w0t)  + Bt sin(w0t)

Remember that we went in front and acknowledge that ω0 =ω in our guess. Acknowledging this will assist with several simplification which we'll require to do later on. Differentiating our guess, plugging this in the differential equation and simplifying provides us the following:

(-m w02 + k) At cos(wt) + (-m w02 + k) Bt sin(wt) + 2mw0 B cos(wt)- 2mw0A sin(wt) = F0 cos(ωt)

Before setting coefficients equivalent, let's notice the definition of the natural frequency and see that,

-m w02 + k = -m (√(k/m))2 + k = -m (k/m) + k = 0

Therefore, the first two terms in fact drop out that is a very good thing and this provides us,

2m w0 cos(wt) - 2mw0A sin(wt) = F0 cos(ωt)

Here setting coefficients equal provides,

cos(wt):           2m w0 B = F0    => B= F0/2mw0

sin(wt):            2m w0 A = 0     => A = 0

Under this case exactly will be,

UP(t) = (F0/2mw0) t sin(w0t)

The displacement for this case is now,

u(t) = c1 cos(w0t)  + c2 sin(w0t) +((F0/2mω0) t sin(ωt))

u(t) = R cos(w0t - d) + ((F0/2mω0) t sin(ωt))

It's totally depending on the form which you prefer for the displacement.

Therefore, what was the point of the two cases now? Fine in the first case, ω0 ≠ω our displacement function comprises two cosines and is well and nice behaved for all time. In contrast, the second case, ω0 =ω will contain some serious matters at t raises. The addition of the t in the particular solution will implies that we are going to notice an oscillation that grows in amplitude as t increases. This case is termed as resonance and we would usually like to ignore this at all costs.

In this case resonance arose through assuming that the forcing function was,

F(t) = F0 cos(wt)

We would also have the opportunity of resonance if we supposed a forcing function of the form.

F(t) = F0 sin (wt)

We must also take care to not suppose that a forcing function will be in one of these two forms. Forcing functions can approach in a broad variety of forms. If we do run in a forcing function different from the one which used now you will have to go by undetermined coefficients or variation of parameters to find out the particular solution.


Related Discussions:- Undamped - forced vibrations

What is the maximum volume of rectangular box, 1. A rectangular piece of ca...

1. A rectangular piece of cardboard measuring 26 inches by 42 inches is to be made into a box with an open top by cutting equal size squares from each comer and folding up the side

Calculate the area of rectangle , Calculate the area of RECTANGLE ? Th...

Calculate the area of RECTANGLE ? The area of a rectangle is the amount of space taken up by a rectangle, which is a two-dimensional shape. You find the area (A) of a recta

What is unreducing fractions, Q, Did you know that you can unreduce a fract...

Q, Did you know that you can unreduce a fraction? Ans. Remember, you reduce a fraction by dividing the numerator and denominator by the same numbers. Here we divide

gauss elimination method , Question: Use  Gauss elimination method to ...

Question: Use  Gauss elimination method to solve the following system of equations.  -y +3z=4  2x-y-2z= 2  2x-2y+z =6  4x-y-7z= 0

Negative and positives, in 1970 a record 1.5 of rain fell in one minute at ...

in 1970 a record 1.5 of rain fell in one minute at Basse Terre, guadaloupe in the caribbnean.at this rate, how much rain fell in 3 seconds or 0.05 of a minutes?

Find and classify the differential equation, Find and classify the equilibr...

Find and classify the equilibrium solutions of the subsequent differential equation. y' = y 2 - y - 6 Solution The equilibrium solutions are to such differential equati

Quan. literacyprofiency, 3.20 euros per kilogram, 1 kilogram =2.2 pounds an...

3.20 euros per kilogram, 1 kilogram =2.2 pounds and current exchange rate is $1=0.9 euros. what is the price per pound?

Vector analysis ...gradient, A body is constrained to move in a path y = 1+...

A body is constrained to move in a path y = 1+ x^2 and its motion is resisted by friction. The co-efficient of friction is 0.3. The body is acted on by a force F directed towards t

Weight, if an object weighed 11 pounds how many ounces would it weigh

if an object weighed 11 pounds how many ounces would it weigh

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd