Types of correlation, Applied Statistics

Assignment Help:

Type of Correlation

1.      Positive and Negative Correlation:

2.      Simple Partial and Multiple Correlations.

3.      Linear and  Non linear or Correlations:

1. Positive and Negatives Correlations: If changes in two variables are in same direction. Increase in one variable is associated with the corresponding increase in other variable, the correlations is said to be positive. For example increase in price and increase  in supply, increase in father ages and increase  in sons ages, higher amount  of capital employed  associated with higher expected profit etc.

On the other hand if variations or fluctuations in two variables are in opposite direction or  in other  words the  increase in one  variable is associated with the corresponding   decreases  in other  or vice  versa  the correlation is said to be negative . For example, increase in price associated with the decrease in demand and vice versa .Thus price and demand have negative correlation. 

2. Linear and non linear Correlation: The distinction between linear and non linear correlation is based upon the constancy of the ratio of change between the two variables. If    the amount of changes in one variable tends to bear constant ratio of change in the other a variable, the correlation is said to be linear. For example, if in a factory raw material or numbers of direct workers are doubled, the production is also doubled, and vice versa correlation would be linear.

On the other hand correlation would be called curvilinear if the amount of change in one variable does not bear a constant ratio of change in the other variable. For example the amount spent on advertisement will not bring the change in the amount of sales in same ratio. It means the variations in both the variables are not inconstant ratio.

Thus linear and non linear correlation may also be positive or negative .It is clear from the following chart.

Thus it is clear from the above that:

1.      If changes in two variables are in the same direction and in constant ratio. The correlation s is linear positive. For example every10% increase in inflation results in 15% increase in general price level. Correlation   between inflation and general price level would be linear and positive.

2.      If changes in two variables are in the opposite direction in constant ratio, the correlation is linear negative. For example every 5% increase in price of a commodity is associated with 10% decrease in demand, the correlation between price and Demand would be negative linear.

3.       If changes in two variable are in the same direction but not inconstant ratio, the correlation is positive nonlinear. For example every increase  of 10%  quantity of money  in circulation, the general price level increases by 5or6%  the   correlation  between  inflation  and general price level would  be positive  curvi  linear.

4.      If changes is two variables are in opposite direction and not inconstant ratio, the correlation is negative curvilinear. For example for every  5%  increase in price  of a commodity is associated with 2%  to 10%  decrease in demand, the correlation between  price and demand is said to be negative and curivilinear  

3. Simple, Partial and Multiple Correlations: The distinction between simple, partial and multiple correlations   based   upon the number of variables studied. When only two variables are studied, it is as case    of simple correlation. On the other hand when three or more variable are studied, it is a problem of either multiple or partial correlation.

When three or more variable are studied simultaneously, it is called multiple correlation. When a study of yield per acre of wheat is studied with a unit change in fertilizers and the rainfall,it is a problem of multiple correlation, whereas  in partial correlation more than two  variables are studied, but consider the influence of a third variable on the two variables influencing variables being kept constant, it is a problems  of partial correlation. For example, if the change in yield of wheat and rice is studied with reference to a unit of fertiliser or rainfall, it is a case of partial correlation. 


Related Discussions:- Types of correlation

Significance of correlation, Significance of Correlation The study of c...

Significance of Correlation The study of correlation is of immense use in practical life. Correlation analysis contributes to the understanding of economic behavior, aids in lo

Advantages of median, Advantages It is especially useful in c...

Advantages It is especially useful in case of open-end classes since only the position and not the values of items must be known. The median is also recommended if th

Correlation analysis, Correlation Analysis Correlation Analysis is perf...

Correlation Analysis Correlation Analysis is performed to measure the degree of association between two variables. The measure is called coefficient of correlation. The coeffic

Plot diagnostic quantities, The data in the data frame compensation are fro...

The data in the data frame compensation are from Myers (1990), Classical andModern Regression with Applications (Second Edition)," Duxbury. The response y here is executive compens

Statistical process control, Statistical Process Control The variabilit...

Statistical Process Control The variability present in manufacturing process can either be eliminated completely or minimized to the extent possible. Eliminating the variabilit

Mode, Mode Mode is the value of the observation which occurs with the  ...

Mode Mode is the value of the observation which occurs with the   greatest  frequency and thus  it is the most fashionable value, Mode has been derived from French  word  La  m

Level process control lab, Based on the following graphs (next page) you sh...

Based on the following graphs (next page) you should write a discussion report (2 pages) on: 1. Determination of whether the open-loop system response is consistent with a 1st o

Correlation matrix table, A.    Do the correlation matrix table. B.    W...

A.    Do the correlation matrix table. B.    Which variable (s) has the largest correlation coeffieient which is not a perfect correlation? C.    Which variable (s) has the s

Diversity of data for the age, The box plot displays the diversity of data ...

The box plot displays the diversity of data for the age; the data ranges from 19 being the minimum value and 60 being the maximum value. The box plot is positively skewed at 0.57 a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd