Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
TYPE I AND II Errors
If a statistical hypothesis is tested, we may get the following four possible cases:
The null hypothesis is true and it is accepted;
The null hypothesis is false and it is rejected;
The null hypothesis is true, but it is rejected;
The null hypothesis is false, but it is accepted.
Clearly, the last two cases lead to errors which are called errors of sampling. The error made in (c) is called Type I Error. The error committed in (d) is called Type II Error. In either case a wrong decision is taken.
P(Committing a Type I Error)
= P (The Null Hypothesis is true but is rejected)\ = P (The Null Hypothesis is true but sample statistic falls in the rejection region) = α, the level of significance
= P (The Null Hypothesis is true but is rejected)\
= P (The Null Hypothesis is true but sample statistic falls in the rejection region)
= α, the level of significance
P(Committing a Type II Error)
= P (The Null Hypothesis is false but sample statistic falls in the acceptance region) = β (say)
= P (The Null Hypothesis is false but sample statistic falls in the acceptance region)
= β (say)
The level of significance, α , is known. This was fixed before testing started. β is known only if the true value of the parameter is known. Of course, if it is known, there was no point in testing for the parameter.
"index number is an economic barometer" comment on this statement
how to determine GRR?
velocity of a particle which moves along the s-axis is given by v=2-4t+5t then find position velocity,acceleration
CALCULATE THE PERCENTAGE OF REFUNDS EXPECTED TO EXCEED $1000 UNDER THE CURRENT WITHHOLDING GUIDELINES
MARKS IN LAW :10 11 10 11 11 14 12 12 13 10 MARKS IN STATISTICS :20 21 22 21 23 23 22 21 24 23 MARKS IN LAW:13 12 11 12 10 14 14 12 13 10 MARKS IN STATISTICS:24 23 22 23 22 22 24 2
The Null Hypothesis - H0: The random errors will be normally distributed The Alternative Hypothesis - H1: The random errors are not normally distributed Reject H0: when P-v
Cluster Analysis could be also represented more formally as optimization procedure, which tries to minimize the Residual Sum of Squares objective function: where μ(ωk) - is a centr
why we use dummy variable
find the average rate of increase in population which in the first decade has increased 20%.in the second 25% and in the third 44%
Ten balls are put in 6 slots at random.Then expected total number of balls in the two extreme slots
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd