Two-tape turing machine, Theory of Computation

Assignment Help:

Let there L1 and L2 . We show that L1 ∩ L2 is CFG .

Let M1 be a decider for L1 and M2 be a decider for L2 .

Consider a 2-tape TM M:

"On input x:

1. copy x on the second tape

2. on the ?rst tape run M1 on x

M=

3. if M1 accepted then goto 4. else M rejects

4. on the second tape run M2 on x

5. if M2 accepted then M accepts else M rejects."

The machine M is a decider and it accepts a string x i? both M1 and M2 accept x.

Two-tape TM is as expressive as the single tape TM.

The process is as follows

"Given a CFG G and a string w , does G generate w ?

Language Formulation (Acceptance Problem for CFG) def

ACFG = {?G , w ? | G is a CFG, w a string and w ∈ L(G )}

The language ACFG is decidable.

 Construct a decider M for ACFG :M = " 1. On input x check if x = ?G , w ? where

G is an CFG and w is a string, if not then M rejects.

2. Convert G into Chomsky normal form.

3. List all derivations in G of length exactly 2|w | - 1,

if w = ? then check if there is the rule S → ?.

4. If w is ever generated then M accepts, else M rejects."


Related Discussions:- Two-tape turing machine

Ogdens lemma, proof ogdens lemma .with example i am not able to undestand ...

proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .

How to solve the checking problem, The objective of the remainder of this a...

The objective of the remainder of this assignment is to get you thinking about the problem of recognizing strings given various restrictions to your model of computation. We will w

Nfas with e-transitions, We now add an additional degree of non-determinism...

We now add an additional degree of non-determinism and allow transitions that can be taken independent of the input-ε-transitions. Here whenever the automaton is in state 1

Toc, how to understand DFA ?

how to understand DFA ?

Sketch an algorithm for recognizing language, Suppose A = (Σ, T) is an SL 2...

Suppose A = (Σ, T) is an SL 2 automaton. Sketch an algorithm for recognizing L(A) by, in essence, implementing the automaton. Your algorithm should work with the particular automa

Kleene closure, One might assume that non-closure under concatenation would...

One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included

Myhill graphs, Another way of representing a strictly 2-local automaton is ...

Another way of representing a strictly 2-local automaton is with a Myhill graph. These are directed graphs in which the vertices are labeled with symbols from the input alphabet of

Class of recognizable languages, Proof (sketch): Suppose L 1 and L 2 are ...

Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(

Normal forms, how to convert a grammar into GNF

how to convert a grammar into GNF

Closure properties of recognizable languages, We got the class LT by taking...

We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd