Two-tape turing machine, Theory of Computation

Assignment Help:

Let there L1 and L2 . We show that L1 ∩ L2 is CFG .

Let M1 be a decider for L1 and M2 be a decider for L2 .

Consider a 2-tape TM M:

"On input x:

1. copy x on the second tape

2. on the ?rst tape run M1 on x

M=

3. if M1 accepted then goto 4. else M rejects

4. on the second tape run M2 on x

5. if M2 accepted then M accepts else M rejects."

The machine M is a decider and it accepts a string x i? both M1 and M2 accept x.

Two-tape TM is as expressive as the single tape TM.

The process is as follows

"Given a CFG G and a string w , does G generate w ?

Language Formulation (Acceptance Problem for CFG) def

ACFG = {?G , w ? | G is a CFG, w a string and w ∈ L(G )}

The language ACFG is decidable.

 Construct a decider M for ACFG :M = " 1. On input x check if x = ?G , w ? where

G is an CFG and w is a string, if not then M rejects.

2. Convert G into Chomsky normal form.

3. List all derivations in G of length exactly 2|w | - 1,

if w = ? then check if there is the rule S → ?.

4. If w is ever generated then M accepts, else M rejects."


Related Discussions:- Two-tape turing machine

Automaton theory, let G=(V,T,S,P) where V={a,b,A,B,S}, T={a,b},S the start ...

let G=(V,T,S,P) where V={a,b,A,B,S}, T={a,b},S the start symbol and P={S->Aba, A->BB, B->ab,AB->b} 1.show the derivation sentence for the string ababba 2. find a sentential form

Instantaneous description - recognizable language, De?nition (Instantaneous...

De?nition (Instantaneous Description) (for both DFAs and NFAs) An instantaneous description of A = (Q,Σ, δ, q 0 , F) , either a DFA or an NFA, is a pair h q ,w i ∈ Q×Σ*, where

Kleene closure, One might assume that non-closure under concatenation would...

One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included

Generalization of the interpretation of local automata, The generalization ...

The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible s

CNF, S-->AAA|B A-->aA|B B-->epsilon

S-->AAA|B A-->aA|B B-->epsilon

Finite-state automaton, Paths leading to regions B, C and E are paths which...

Paths leading to regions B, C and E are paths which have not yet seen aa. Those leading to region B and E end in a, with those leading to E having seen ba and those leading to B no

Automaton for finite languages, We can then specify any language in the cla...

We can then specify any language in the class of languages by specifying a particular automaton in the class of automata. We do that by specifying values for the parameters of the

Construct a recognizer, Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG t...

Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec

Chomsky normal form, s->0A0|1B1|BB A->C B->S|A C->S|null find useless symbo...

s->0A0|1B1|BB A->C B->S|A C->S|null find useless symbol?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd