Two player problem of points set up - game theory, Game Theory

Assignment Help:

a) Show that

259_Two player Problem of Points set up 1.png

A counting proof could be fun(?). But any old proof will do.

(Note that the coefficients (1,2,1) in the above are just the elements of the second row of Pascal's triangle. In general, if you take any row of Pascal's triangle and apply all of the coefficients to adjacent entries of a later row in the table, you will get another entry in Pascal's triangle. You don't have to prove this).

b) Not connected to part a) above (I don't think). Consider the two player Problem of Points set up, where the game consists of n rounds, and where player A has won a rounds and Player B has won b rounds (a, b < n)whentheyareforcedtoquit.Let r =2n - 1 - (a + b). Show that according to the Pascal-Fermat solution, the ratio of A's share of the pot to B's share of the pot should be:

1789_Two player Problem of Points set up 2.png

That is, all you need is the r'th row of Pascal's Triangle to get the split of the pot, as pointed out by Pascal.


Related Discussions:- Two player problem of points set up - game theory

Explain about the term game theory, Explain about the term Game Theory. ...

Explain about the term Game Theory. Game Theory: While the decisions of two or more firms considerably influence each others’ profits, in that case they are into a situation

Bidding increment, A bidding increment is defined by the auctioneer as the ...

A bidding increment is defined by the auctioneer as the least amount above the previous bid that a new bid must be in order to be adequate to the auctioneer. For example, if the in

Mixed strategy, A strategy consisting of potential moves and a chance distr...

A strategy consisting of potential moves and a chance distribution (collection of weights) that corresponds to how frequently every move is to be played. A player would solely use

Kakutani, Twentieth century mathematician who expanded on earlier fastened ...

Twentieth century mathematician who expanded on earlier fastened purpose theorems. a hard and fast purpose theorem defines the conditions on a perform, f(x), beneath that there exi

Case study - rock-scissors-paper, Case study GAME 1 Rock-Scissors-Pap...

Case study GAME 1 Rock-Scissors-Paper This game entails playing three different versions of the children's game rock-scissors-paper. In rock-scissors-paper, two people si

Equilibrium payoffs, Equilibrium payoffs a) The reward system changes...

Equilibrium payoffs a) The reward system changes payoffs for Player A, but does not change the equilibrium strategies in the game. Player A still takes the money at the fir

Auctions, what will be the best strategy for a bidder in an auction compris...

what will be the best strategy for a bidder in an auction comprised of four bidders?

Game playing in class:adding numbers—win at 100, GAME PLAYING IN CLASS GAME...

GAME PLAYING IN CLASS GAME 1 Adding Numbers—Win at 100 This game is described in Exercise 3.7a. In this version, two players take turns choosing a number between 1 and 10 (inclus

Game playing in class-equilibrium payoffs are (2, Equilibrium payoffs are ...

Equilibrium payoffs are (2, 3, 2). Player A’s equilib- rium strategy is “N and then N if b follows N or N if d follows N” or “Always N.” Player B’s equilibrium strategy is “b if N

Games sequential moves-game played b/w pitcher and batter, Problem: Consid...

Problem: Consider a (simplified) game played between a pitcher (who chooses between throwing a fastball or a curve) and a batter (who chooses which pitch to expect). The batter ha

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd