Two circles touch internally, Mathematics

Assignment Help:

Two circles touch internally at a point P and from a point T on the common tangent at P, tangent segments TQ and TR are drawn to the two circles. Prove that TQ = TR.

146_Two circles touch internally.png

Given: Two circles touch each other internally at P . From a point T on the common tangent, tanget segments TQ and TR drawn to the two circles.

To prove : TQ = TR
Proof : TR = TP -------→ (1)

(Tangets from an external point are equal)
Similarly, TQ = TP-------→(2)
From (1)and (2), we get: TQ = TR

 


Related Discussions:- Two circles touch internally

Determine a trigonometric function, At rest, the human heart beats once eve...

At rest, the human heart beats once every second. At the strongest part of the beat, a person's blood pressure peaks at 120mmHg. At the most relaxed part of the beat, a person's bl

Variance-measure of central tendency, Variance Square of the standard...

Variance Square of the standard deviation is termed as variance. The semi inter-quartile range - It is a measure of dispersion which includes the use of quartile. A q

Coordinate geometry, find the value of x for which the distance between the...

find the value of x for which the distance between the points p(4,-5) and q(12,x) is 10 units

Calculate maximum area of the triangle, if the sum of lengths of hypotenuse...

if the sum of lengths of hypotenuse and a side of right triangle are given, prove the area of the triangle is maximum when angle between them is pi/3

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd