Truth tables - artificial intelligence, Computer Engineering

Assignment Help:

Truth Tables - artificial intelligence:

In propositional logic, where we are limited to expressing sentences where propositions are true or false - we can check whether a specific statement is true or false by working out the truth of ever larger sub statements using the truth of the propositions themselves. To tests the truth of sub statements, in the presence of connectives, we have to know how to deal with truth assignments. For instance, if we know that  isis_male(barack_obama) and  is president(barack_obama)  are true, then we know that the sentence:

is_president(barack_obama)∧ is_male(barack_obama)

is also true, because we know that a sentence of the form P∧Q is true when P and Q both are true.

This table allows us to read the truth of the connectives in the following manner. Imagine we are looking at row 3. This says that, if Q is true and P is false, then

1.   ¬P is true

2.   P∧Q is true

3.   P ∨Q is false

4.   P -> Q is true

5.   P <-> Q is false

Note down that, if P is false, then regardless of whether Q is true or false, the statement P->Q is true. This takes a little getting used to, but may be a very valuable tool in theorem proving: if we know that something is false, it may imply anything we want it to. So, the following sentence is true: "Barack Obama is female" implies that "Barack Obama is an alien", because thesentence that Barack Obama is female was false, so the result that Barack Obama is an alien may be deduced in a sound way.

Each row of a truth table describes the connectives for a specific assignment of true and false to the individual propositions in a sentence. We say each assignment a model: it represents a specific possible state of the world. For 2 propositions P and Q there are 4 models.

In general, for propositional sentences, a model is also only a specific assignment of truth values to its distinct propositions. A sentence which contains propositions will have 2n possible models and so 2n rows in its truth table. A sentence S will be false or true for a given model M - when S is true we say 'M is a model of S'.

Sentences which are always true, regardless of the truth of the distinct propositions, are known as tautologies (or valid sentences). For all models,Tautologies are true. For illustration, if I said that "Tony Blair is prime minister or Tony Blair is not prime minister", this is basically a content-free sentence, because we could  have replaced the predicate of being Tony Blair with any predicate and the sentence would still have been correct.

Tautologies are not always as simple to notice as the one above, and we may use truth tables to be sure that a statement we have written is true, regardless of the truth of the distinct propositions it contains. For doing this, the columns of our truth table will be headed with ever larger sections of the sentence, till the final column contains the complete sentence. As before, the rows of the truth table will represent all the possible models for the sentence, for example each possible assignment of truth values to the individual propositions in the sentence.In the truth table,we will use these initial truth values to assign truth values to the subsentencesand then use these new truth values to assign truth values to bigger subsentences and so on. If the last column (the entire sentence) is always assigned true, then its means, whatever the truth values of the propositions being discussed, the complete sentence will turn out to be true.


Related Discussions:- Truth tables - artificial intelligence

What are intelligent agents, Q. What are intelligent agents? What tasks wil...

Q. What are intelligent agents? What tasks will they perform? ANSWER: Intelligent agents are software that helps you, or operate on your behalf, in performing repetitive comput

Formal analysis of visual elements, Formal Analysis: The second step o...

Formal Analysis: The second step of the art critiquing process often begins with an analysis of the artworks formal elements and how they are the organised. The formal elem

Dataflow computing, Dataflow Computing A different to the von Neumann m...

Dataflow Computing A different to the von Neumann model of computation is the dataflow computation model. In a dataflow model, control is fixed to the flow of data. The order o

Advantage and disadvantage of threaded binary trees, Advantage  1.     ...

Advantage  1.       By doing threading we neglect the recursive method of traversing a Tree , which makes use of stack and consumes many memory and time . 2.       The node

Dynamic configuration of parallel virtual machine, Q. Dynamic Configuration...

Q. Dynamic Configuration of parallel virtual machine? int pvm_addhosts( char **hosts, int nhost, int *infos ) Add hosts to virtual machine. hosts is an arra

Decision support at a digital hospital, Heart disease is the number-one kil...

Heart disease is the number-one killer in the United States, and in a cardiac crisis, each minute matters. Indiana Heart Hospital (IHH) is a new cardiac hospital that saves life b

Quick sort , Write Quick sort non recursive program

Write Quick sort non recursive program

Illustration of equivalent exe program, Q. Illustration of equivalent EXE p...

Q. Illustration of equivalent EXE program? An illustration of equivalent EXE program for COM program is: ; ABSTRACT this program adds 2 8-bit numbers in the memory locations

Explain demand paging, What is Demand paging? Virtual memory is commonl...

What is Demand paging? Virtual memory is commonly executed by demand paging. In demand paging, the pager brings only those essential pages into memory instead of swapping in a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd