True inequality, Algebra

Assignment Help:

We have to give one last note on interval notation before moving on to solving inequalities. Always recall that while we are writing down an interval notation for inequality that the number onto the left has to be the smaller of the two.

Now it's time to begin thinking about solving linear inequalities. We will employ the following set of facts in our solving of inequalities.  Note down that the facts are given for <. However we can write down an equivalent set of facts for the remaining three inequalities.

1.   If a < b  then a + c < b + c and a - c < b - c for any number c.  In other term, we can add or subtract a number to both of sides of the inequality & we don't vary the inequality itself.

2.   If a < b and c > 0 then ac

3.   If a < b and c<0 then ac > bc  and a/c >   b/c .  In this case, unlike the earlier fact, if c is negative we have to flip the direction of the inequality while we multiply or divide both sides by the inequality through c.

These are closely the similar facts that we utilized to solve linear equations. The single real exception is the third fact. It is the important issue as it is frequently the most misused and/or forgotten fact in solving inequalities.

If you aren't certain that you believe that the sign of c matters for the second & third fact assume the following number instance.

                                                                   -3 < 5

This is a true inequality.  Now multiply both of sides by 2 and by -2.

- 3 < 5                                                                         - 3 < 5

-3( 2) < 5 ( 2)                                                             -3 ( -2) < 5 ( -2)

- 6 < 10                                                                         6 < -10

Sure enough, while multiplying by a +ve number the direction of the inequality remains the similar, however while multiplying by a -ve number the direction of the inequality does change.


Related Discussions:- True inequality

Probability, of the 400 doctors attending a conference 240 practice family ...

of the 400 doctors attending a conference 240 practice family medicine and 130 were from countries outside the US.1/3 of the family medicine practitioners were not from the US. Wha

MAT221, .1.Write your birth date or the birth date of someone in your famil...

.1.Write your birth date or the birth date of someone in your family as mm/dd/yy. (Example: March 13, 1981 is written 3/13/81, and November 7, 1967 is written 11/7/67). ?Now le

Examples of polynomial, Examples of  polynomial that  doesn't factor No...

Examples of  polynomial that  doesn't factor Now, all of the examples that we've worked to this point comprised factorable polynomials. However, that doesn't have to be the cas

Fundamental theorem of algebra, If P (x) is a polynomial of degree n then P...

If P (x) is a polynomial of degree n then P (x) will have accurately n zeroes, some of which might repeat. This fact says that if you list out all the zeroes & listing each one

Graphing, I do not understand graphing at all.

I do not understand graphing at all.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd