True inequality, Algebra

Assignment Help:

We have to give one last note on interval notation before moving on to solving inequalities. Always recall that while we are writing down an interval notation for inequality that the number onto the left has to be the smaller of the two.

Now it's time to begin thinking about solving linear inequalities. We will employ the following set of facts in our solving of inequalities.  Note down that the facts are given for <. However we can write down an equivalent set of facts for the remaining three inequalities.

1.   If a < b  then a + c < b + c and a - c < b - c for any number c.  In other term, we can add or subtract a number to both of sides of the inequality & we don't vary the inequality itself.

2.   If a < b and c > 0 then ac

3.   If a < b and c<0 then ac > bc  and a/c >   b/c .  In this case, unlike the earlier fact, if c is negative we have to flip the direction of the inequality while we multiply or divide both sides by the inequality through c.

These are closely the similar facts that we utilized to solve linear equations. The single real exception is the third fact. It is the important issue as it is frequently the most misused and/or forgotten fact in solving inequalities.

If you aren't certain that you believe that the sign of c matters for the second & third fact assume the following number instance.

                                                                   -3 < 5

This is a true inequality.  Now multiply both of sides by 2 and by -2.

- 3 < 5                                                                         - 3 < 5

-3( 2) < 5 ( 2)                                                             -3 ( -2) < 5 ( -2)

- 6 < 10                                                                         6 < -10

Sure enough, while multiplying by a +ve number the direction of the inequality remains the similar, however while multiplying by a -ve number the direction of the inequality does change.


Related Discussions:- True inequality

Help..., I am a 14 year old 9th grade Freshmen, I seriously need help. I am...

I am a 14 year old 9th grade Freshmen, I seriously need help. I am failing with a 49.00 grade in my class

Areas, does total surface area mean total exposed area

does total surface area mean total exposed area

Exponential and logarithmic functions, use M(t)434e^-.08t to find the appro...

use M(t)434e^-.08t to find the approximate the number of continuously serving members in each year

Exponential story problems., The cost of a can of Coca-Cola in 1960 was $0....

The cost of a can of Coca-Cola in 1960 was $0.10. The exponential function that models the cost of Coca-Cola by year is given below, where (t) is the number of years since 1960. C

Function composition, Now we need to discuss the new method of combining fu...

Now we need to discuss the new method of combining functions. The new way of combining functions is called function composition. Following is the definition. Given two functions

Logaritmos, I want to know the solution of this problem: log2.log3(x+2)=2

I want to know the solution of this problem: log2.log3(x+2)=2

Advantage and disadvantage of using algebraic distance, 1) The goal of the ...

1) The goal of the first questions is to implement some code that performs calibration using the method described in the book; by first computing a projection matrix, and then deco

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd