True inequality, Algebra

Assignment Help:

We have to give one last note on interval notation before moving on to solving inequalities. Always recall that while we are writing down an interval notation for inequality that the number onto the left has to be the smaller of the two.

Now it's time to begin thinking about solving linear inequalities. We will employ the following set of facts in our solving of inequalities.  Note down that the facts are given for <. However we can write down an equivalent set of facts for the remaining three inequalities.

1.   If a < b  then a + c < b + c and a - c < b - c for any number c.  In other term, we can add or subtract a number to both of sides of the inequality & we don't vary the inequality itself.

2.   If a < b and c > 0 then ac

3.   If a < b and c<0 then ac > bc  and a/c >   b/c .  In this case, unlike the earlier fact, if c is negative we have to flip the direction of the inequality while we multiply or divide both sides by the inequality through c.

These are closely the similar facts that we utilized to solve linear equations. The single real exception is the third fact. It is the important issue as it is frequently the most misused and/or forgotten fact in solving inequalities.

If you aren't certain that you believe that the sign of c matters for the second & third fact assume the following number instance.

                                                                   -3 < 5

This is a true inequality.  Now multiply both of sides by 2 and by -2.

- 3 < 5                                                                         - 3 < 5

-3( 2) < 5 ( 2)                                                             -3 ( -2) < 5 ( -2)

- 6 < 10                                                                         6 < -10

Sure enough, while multiplying by a +ve number the direction of the inequality remains the similar, however while multiplying by a -ve number the direction of the inequality does change.


Related Discussions:- True inequality

College algebra, find the domain and range of f(X)=2*3^x+5

find the domain and range of f(X)=2*3^x+5

Solve equation by geometric standpoint, Solve each of the following.    ...

Solve each of the following.                              |x - 2 | = 3x + 1 Solution At first glance the formula we utilized above will do us no good here.  It needs the

List the multiplicities of the zeroes, List the multiplicities of the zeroe...

List the multiplicities of the zeroes of each of the following polynomials.              P ( x ) = 5x 5 - 20x 4 + 5x3 + 50x2 - 20x - 40 = 5 ( x + 1) 2 ( x - 2) 3 Solutio

Synthetic division table, Synthetic division table In a synthetic divis...

Synthetic division table In a synthetic division table perform the multiplications in our head & drop the middle row only writing down the third row and as we will be going thr

Example of equations with radicals, Solve x =√(x+ 6) . Solution In ...

Solve x =√(x+ 6) . Solution In this equation the fundamental problem is the square root.  If it weren't there we could do the problem.  The whole procedure that we're going

Quadratic Regression, Determine a quadratic regression function that repres...

Determine a quadratic regression function that represents the distance the ball will travel in terms of its speed when it is hit at a 40 degree angle.

Linear programming., the sudbrook school play has a maximum of 700 tickets ...

the sudbrook school play has a maximum of 700 tickets to sell.at least 300 tickets must be sold in advance. Advance tickets will be sold for $20.00 while the tickeys at the door wi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd