True inequality, Algebra

Assignment Help:

We have to give one last note on interval notation before moving on to solving inequalities. Always recall that while we are writing down an interval notation for inequality that the number onto the left has to be the smaller of the two.

Now it's time to begin thinking about solving linear inequalities. We will employ the following set of facts in our solving of inequalities.  Note down that the facts are given for <. However we can write down an equivalent set of facts for the remaining three inequalities.

1.   If a < b  then a + c < b + c and a - c < b - c for any number c.  In other term, we can add or subtract a number to both of sides of the inequality & we don't vary the inequality itself.

2.   If a < b and c > 0 then ac

3.   If a < b and c<0 then ac > bc  and a/c >   b/c .  In this case, unlike the earlier fact, if c is negative we have to flip the direction of the inequality while we multiply or divide both sides by the inequality through c.

These are closely the similar facts that we utilized to solve linear equations. The single real exception is the third fact. It is the important issue as it is frequently the most misused and/or forgotten fact in solving inequalities.

If you aren't certain that you believe that the sign of c matters for the second & third fact assume the following number instance.

                                                                   -3 < 5

This is a true inequality.  Now multiply both of sides by 2 and by -2.

- 3 < 5                                                                         - 3 < 5

-3( 2) < 5 ( 2)                                                             -3 ( -2) < 5 ( -2)

- 6 < 10                                                                         6 < -10

Sure enough, while multiplying by a +ve number the direction of the inequality remains the similar, however while multiplying by a -ve number the direction of the inequality does change.


Related Discussions:- True inequality

Calculus, how to solve calculus?

how to solve calculus?

..addition, what is 300000000000000000000+612222

what is 300000000000000000000+612222

Determine the two zeroes - factor theorem, Given that x=2 is a zero of P ( ...

Given that x=2 is a zero of P ( x ) = x 3 + 2x 2 - 5x - 6 determine the other two zeroes. Solution Firstly, notice that we actually can say the other two since we know th

Constant function, It is probably the easiest function which we'll ever gra...

It is probably the easiest function which we'll ever graph and still it is one of the functions which tend to cause problems for students. The most general form for the constant

Common graphs, We desire to look at the graph of quadratic function. The mo...

We desire to look at the graph of quadratic function. The most general form of a quadratic function is,                                                       f (x ) = ax 2 + bx

Solve each variable, solve each equation for given variable 3ab-2bc=12;

solve each equation for given variable 3ab-2bc=12;

#variations., #If the common factor is known how do you find what the entir...

#If the common factor is known how do you find what the entire equation be (ex: A varies directly with t^2; A=8 when t=2. What is the formula?)

Transformations, how do i solve transformations,one to one formuals onto fo...

how do i solve transformations,one to one formuals onto formulas

Polynomials, Write a polynomial function in standard form with the given ze...

Write a polynomial function in standard form with the given zeros

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd