True inequality, Algebra

Assignment Help:

We have to give one last note on interval notation before moving on to solving inequalities. Always recall that while we are writing down an interval notation for inequality that the number onto the left has to be the smaller of the two.

Now it's time to begin thinking about solving linear inequalities. We will employ the following set of facts in our solving of inequalities.  Note down that the facts are given for <. However we can write down an equivalent set of facts for the remaining three inequalities.

1.   If a < b  then a + c < b + c and a - c < b - c for any number c.  In other term, we can add or subtract a number to both of sides of the inequality & we don't vary the inequality itself.

2.   If a < b and c > 0 then ac

3.   If a < b and c<0 then ac > bc  and a/c >   b/c .  In this case, unlike the earlier fact, if c is negative we have to flip the direction of the inequality while we multiply or divide both sides by the inequality through c.

These are closely the similar facts that we utilized to solve linear equations. The single real exception is the third fact. It is the important issue as it is frequently the most misused and/or forgotten fact in solving inequalities.

If you aren't certain that you believe that the sign of c matters for the second & third fact assume the following number instance.

                                                                   -3 < 5

This is a true inequality.  Now multiply both of sides by 2 and by -2.

- 3 < 5                                                                         - 3 < 5

-3( 2) < 5 ( 2)                                                             -3 ( -2) < 5 ( -2)

- 6 < 10                                                                         6 < -10

Sure enough, while multiplying by a +ve number the direction of the inequality remains the similar, however while multiplying by a -ve number the direction of the inequality does change.


Related Discussions:- True inequality

Substituting values, simplify the following expressions for the given value...

simplify the following expressions for the given values x3 -x2/x2 -x x=3 how do i do this to get answer need step by step instruction

Agnes, #question.three individuals form a partnership and agree to divid th...

#question.three individuals form a partnership and agree to divid the profits equally x invests $9000, y invest $7000 and z invest $4000. How much less does x receive than if the p

Determine the matrix of the transformation, Consider the linear transformat...

Consider the linear transformation     (a)  Find the image of (3 , -2 , 3) under T. (b)  Does the vector (5, 3) belong to the range of T? (c)  Determine the matrix of the trans

Evaluate the logarithms, Example   Evaluate following logarithms. log 4 ...

Example   Evaluate following logarithms. log 4 16 Solution Now, the reality is that directly evaluating logarithms can be a very complicated process, even for those who

Exponential functions, Definition of an exponential function If b is an...

Definition of an exponential function If b is any number like that b = 0 and b ≠ 1 then an exponential function is function in the form,

Process to solve polynomial inequalities, Solve x 2 -10 Solution ...

Solve x 2 -10 Solution There is a quite simple procedure to solving these.  If you can memorize it you'll always be able to solve these kinds of inequalities. Step 1:

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd