True inequality, Algebra

Assignment Help:

We have to give one last note on interval notation before moving on to solving inequalities. Always recall that while we are writing down an interval notation for inequality that the number onto the left has to be the smaller of the two.

Now it's time to begin thinking about solving linear inequalities. We will employ the following set of facts in our solving of inequalities.  Note down that the facts are given for <. However we can write down an equivalent set of facts for the remaining three inequalities.

1.   If a < b  then a + c < b + c and a - c < b - c for any number c.  In other term, we can add or subtract a number to both of sides of the inequality & we don't vary the inequality itself.

2.   If a < b and c > 0 then ac

3.   If a < b and c<0 then ac > bc  and a/c >   b/c .  In this case, unlike the earlier fact, if c is negative we have to flip the direction of the inequality while we multiply or divide both sides by the inequality through c.

These are closely the similar facts that we utilized to solve linear equations. The single real exception is the third fact. It is the important issue as it is frequently the most misused and/or forgotten fact in solving inequalities.

If you aren't certain that you believe that the sign of c matters for the second & third fact assume the following number instance.

                                                                   -3 < 5

This is a true inequality.  Now multiply both of sides by 2 and by -2.

- 3 < 5                                                                         - 3 < 5

-3( 2) < 5 ( 2)                                                             -3 ( -2) < 5 ( -2)

- 6 < 10                                                                         6 < -10

Sure enough, while multiplying by a +ve number the direction of the inequality remains the similar, however while multiplying by a -ve number the direction of the inequality does change.


Related Discussions:- True inequality

Partial fractions, This section doesn't actually have many to do with the r...

This section doesn't actually have many to do with the rest of this chapter, but since the subject required to be covered and it was a fairly short chapter it appeared like as good

Inequalities, Jumping rope can burn 600 calories per hour. Write and solve ...

Jumping rope can burn 600 calories per hour. Write and solve an inequality to find the number of hours of jumping rope that it would take for you to burn at least 450 calories.

Polynomial satisfy - rational root theorem, Example: prove that the roots ...

Example: prove that the roots of the below given polynomial satisfy the rational root theorem. P ( x ) = 12x 3 - 41x 2 - 38x + 40 = ( x - 4) (3x - 2) ( 4x +5) Solution

Word problems, A mountain has an elevation of 19,389 feet in 1918, the glac...

A mountain has an elevation of 19,389 feet in 1918, the glacier on this peak covered 4 acres. By 2003 this glacier had melted to 1 acre. What was the yearlyrate of change and what

Process for graphing a rational function, 1. Determine the intercepts, if t...

1. Determine the intercepts, if there are any.  Recall that the y-intercept is specified by (0, f (0)) and we determine the x-intercepts by setting the numerator equivalent to z

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd