Trig functions:, Mathematics

Assignment Help:

Trig Functions: The intent of this section is introducing you of some of the more important (from a Calculus view point...) topics from a trig class.  One of the most significant (but not the first) of these topics will be how to employ the unit circle.  We will in fact leave the most significant topic to the next section.

First let's begin with the six trig functions and how they associate to each other.

cos ( x )                                             sin ( x )

tan ( x ) = sin ( x ) /cos ( x )               cot ( x ) = cos ( x ) /sin ( x ) =1/tan ( x )

sec ( x )= 1/ cos ( x )                         csc ( x ) = 1/sin ( x )

Recall that all the trig functions can be described in terms of a right triangle.

8_Adjacent.png

From this right triangle we get the given definitions of the six trig functions.

Cos θ = adjacent /hypotenuse sin θ = opposite/ hypotenuse

tan θ = opposite / adjacent      cot θ = adjacent /opposite

sec θ = hypotenuse /adjacent  csc θ∏ = hypotenuse /opposite

Remembering both the relationship among all six of the trig functions and their right triangle definitions will be useful in this course on occasion.

Next, we have to touch on radians. Mostly it is done in the terms of degree. The simialr is true in many science classes.  Though, in a calculus almost everything is done in radians. The given table gives some of the basic angles in both degrees & radians.

1649_degree radius.png

We might not see these particular angles all that much while we get into the Calculus portion of these notes, but knowing these can help us to visualize each angle.  Now, one more time just ensure this is clear.

Be forewarned, everything in mostly calculus will be done in radians!


Related Discussions:- Trig functions:

Equation of the plane x + 4y 3z = 1, Find the equation of the plane thro...

Find the equation of the plane through (2, 1, 0) and parallel to x + 4y   3z = 1.

Determine the angle in hexagonal-shaped nut, The figure provided below show...

The figure provided below shows a hexagonal-shaped nut. What is the measure of ∠ABC?   a. 120° b. 135° c. 108° d. 144° a. The measure of an angle of a regula

Substitution rule, Substitution Rule ∫ f ( g ( x )) g′ ( x ) dx = ∫ f (...

Substitution Rule ∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x ) we can't do the following integrals through general rule. This looks considerably

Linear Equations of Parallel Lines, A line has the equation 2y=-3x+1. Find...

A line has the equation 2y=-3x+1. Find an equation of a line parallel to this line that has a y-intercept of -2.

Divison, what is 24 diveded by 3

what is 24 diveded by 3

X and Y Intercepts, Find the x and y intercepts for the following equations...

Find the x and y intercepts for the following equations: 3y=3x -y=-x-4 2x+3y=6 y=5

What is the new cost of the pants, A pair of pants costs $24. The cost was ...

A pair of pants costs $24. The cost was decreased by 8%. What is the new cost of the pants? If the cost of the pants is decreased by 8%, the cost of the pants is 92 percent of

Exponents., the (cube square root of 2)^1/2)^3

the (cube square root of 2)^1/2)^3

Compute the derivative, Write an octave program that will take a set of poi...

Write an octave program that will take a set of points {x k , f k } representing a function and compute the derivative at the same points x k using 1. 2-point forward di erence

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd