Trig functions:, Mathematics

Assignment Help:

Trig Functions: The intent of this section is introducing you of some of the more important (from a Calculus view point...) topics from a trig class.  One of the most significant (but not the first) of these topics will be how to employ the unit circle.  We will in fact leave the most significant topic to the next section.

First let's begin with the six trig functions and how they associate to each other.

cos ( x )                                             sin ( x )

tan ( x ) = sin ( x ) /cos ( x )               cot ( x ) = cos ( x ) /sin ( x ) =1/tan ( x )

sec ( x )= 1/ cos ( x )                         csc ( x ) = 1/sin ( x )

Recall that all the trig functions can be described in terms of a right triangle.

8_Adjacent.png

From this right triangle we get the given definitions of the six trig functions.

Cos θ = adjacent /hypotenuse sin θ = opposite/ hypotenuse

tan θ = opposite / adjacent      cot θ = adjacent /opposite

sec θ = hypotenuse /adjacent  csc θ∏ = hypotenuse /opposite

Remembering both the relationship among all six of the trig functions and their right triangle definitions will be useful in this course on occasion.

Next, we have to touch on radians. Mostly it is done in the terms of degree. The simialr is true in many science classes.  Though, in a calculus almost everything is done in radians. The given table gives some of the basic angles in both degrees & radians.

1649_degree radius.png

We might not see these particular angles all that much while we get into the Calculus portion of these notes, but knowing these can help us to visualize each angle.  Now, one more time just ensure this is clear.

Be forewarned, everything in mostly calculus will be done in radians!


Related Discussions:- Trig functions:

Speed, how much distance is covered by a man if he is travelling at a speed...

how much distance is covered by a man if he is travelling at a speed of 45km/h in 5 sec

Quadratic equation assignment, what is number of quadratic equation that ar...

what is number of quadratic equation that are unchanged by squaring their roots is There are four such cases x 2   =0 root 0 (x-1) 2 =0  root 1 x(x+1)=0  roots  0 and 1

Example of repeated eigenvalues, Illustration : Solve the following IVP. ...

Illustration : Solve the following IVP. Solution: First get the eigenvalues for the system. = l 2 - 10 l+ 25 = (l- 5) 2 l 1,2 = 5 Therefore, we got a

Geometry, how to make an obtuse scalene triangle FAT with m

how to make an obtuse scalene triangle FAT with m

Incircle, ab=8cm,bc=6cm,ca=5cm draw an incircle.

ab=8cm,bc=6cm,ca=5cm draw an incircle.

Example of developing an understanding, In class 1, the teacher had written...

In class 1, the teacher had written down the digits 0,1, ...., 9 on the board. Then she made all the children recite the corresponding number names. Finally, she made them write th

Solve the form ax2 - bx - c factoring polynomials, Solve the form ax 2 - b...

Solve the form ax 2 - bx - c factoring polynomials ? This tutorial will help you factor quadratics that look something like this: 2x 2 -3x - 14 (Leading coefficient is

Example of least common denominator, Example of Least Common Denominator: ...

Example of Least Common Denominator: Example: Add 1/7 +2 /3 + 11/12 + 4/6 Solution: Step 1:             Find out primes of each denominator. 7 = 7 (already is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd