Trig functions:, Mathematics

Assignment Help:

Trig Functions: The intent of this section is introducing you of some of the more important (from a Calculus view point...) topics from a trig class.  One of the most significant (but not the first) of these topics will be how to employ the unit circle.  We will in fact leave the most significant topic to the next section.

First let's begin with the six trig functions and how they associate to each other.

cos ( x )                                             sin ( x )

tan ( x ) = sin ( x ) /cos ( x )               cot ( x ) = cos ( x ) /sin ( x ) =1/tan ( x )

sec ( x )= 1/ cos ( x )                         csc ( x ) = 1/sin ( x )

Recall that all the trig functions can be described in terms of a right triangle.

8_Adjacent.png

From this right triangle we get the given definitions of the six trig functions.

Cos θ = adjacent /hypotenuse sin θ = opposite/ hypotenuse

tan θ = opposite / adjacent      cot θ = adjacent /opposite

sec θ = hypotenuse /adjacent  csc θ∏ = hypotenuse /opposite

Remembering both the relationship among all six of the trig functions and their right triangle definitions will be useful in this course on occasion.

Next, we have to touch on radians. Mostly it is done in the terms of degree. The simialr is true in many science classes.  Though, in a calculus almost everything is done in radians. The given table gives some of the basic angles in both degrees & radians.

1649_degree radius.png

We might not see these particular angles all that much while we get into the Calculus portion of these notes, but knowing these can help us to visualize each angle.  Now, one more time just ensure this is clear.

Be forewarned, everything in mostly calculus will be done in radians!


Related Discussions:- Trig functions:

Find out general formula for tangent vector and unit vector, Find out the g...

Find out the general formula for the tangent vector and unit tangent vector to the curve specified by r → (t) = t 2 i → + 2 sin t j → + 2 cos t k → . Solution First,

Differences of squares and other even powers, Differences of Squares (and o...

Differences of Squares (and other even powers) ? A square monomial is a monomial which is the square of another monomial. Here are some examples: 25 is the square of 5 x 2 i

Calculate the value of the following limits, Calculate the value of the fol...

Calculate the value of the following limits. Solution To remind us what this function such as following the graph. hence, we can see that if we reside to the r

Composite functions, f(x)=4x-3 and g(x)=(x+3)/4 a)Find the function fg(x) ...

f(x)=4x-3 and g(x)=(x+3)/4 a)Find the function fg(x) b)Hence describe the relationship between the functions f and g c)Write down the exact value of fg(sqrt(3))

Recognize the importance of famous numbers, Activity This activity will ...

Activity This activity will help you recognize the importance of some very famous numbers, as well as learn more about approximations. Directions Using the Internet, provi

Applications of series - differential equations, Series Solutions to Differ...

Series Solutions to Differential Equations Here now that we know how to illustrate function as power series we can now talk about at least some applications of series. There ar

Method of disks or the method of rings, Method of disks or the method of ri...

Method of disks or the method of rings One of the simple methods for getting the cross-sectional area is to cut the object perpendicular to the axis of rotation.  Carrying out

Quantitative, A lobster catcher spends $12 500 per month to maintain a lobs...

A lobster catcher spends $12 500 per month to maintain a lobster boat. He plans to catch an average of 20 days per month during lobster season. For each day, he must allow approx

How much money did carlie have after she had paid her friend, Carlie receiv...

Carlie received x dollars every hour she spent babysitting. She babysat a total of h hours. She then gave half of the money to a friend who had stopped through to help her. How muc

Which of the partially ordered sets are lattices, Which of the partially or...

Which of the partially ordered sets in figures (i), (ii) and (iii) are lattices? Justify your answer.   Ans: suppose (L, ≤) be a poset. If each subset {x, y} consisting

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd