Trig functions:, Mathematics

Assignment Help:

Trig Functions: The intent of this section is introducing you of some of the more important (from a Calculus view point...) topics from a trig class.  One of the most significant (but not the first) of these topics will be how to employ the unit circle.  We will in fact leave the most significant topic to the next section.

First let's begin with the six trig functions and how they associate to each other.

cos ( x )                                             sin ( x )

tan ( x ) = sin ( x ) /cos ( x )               cot ( x ) = cos ( x ) /sin ( x ) =1/tan ( x )

sec ( x )= 1/ cos ( x )                         csc ( x ) = 1/sin ( x )

Recall that all the trig functions can be described in terms of a right triangle.

8_Adjacent.png

From this right triangle we get the given definitions of the six trig functions.

Cos θ = adjacent /hypotenuse sin θ = opposite/ hypotenuse

tan θ = opposite / adjacent      cot θ = adjacent /opposite

sec θ = hypotenuse /adjacent  csc θ∏ = hypotenuse /opposite

Remembering both the relationship among all six of the trig functions and their right triangle definitions will be useful in this course on occasion.

Next, we have to touch on radians. Mostly it is done in the terms of degree. The simialr is true in many science classes.  Though, in a calculus almost everything is done in radians. The given table gives some of the basic angles in both degrees & radians.

1649_degree radius.png

We might not see these particular angles all that much while we get into the Calculus portion of these notes, but knowing these can help us to visualize each angle.  Now, one more time just ensure this is clear.

Be forewarned, everything in mostly calculus will be done in radians!


Related Discussions:- Trig functions:

Utilizes the infinite definition of the limit to prove limit, Utilizes the ...

Utilizes the definition of the limit to prove the given limit. Solution Let M > 0 be any number and we'll have to choose a δ > 0 so that, 1/ x 2   > M

Prove the equality of axiom choice, (1) Prove that Zorn's lemma is equivale...

(1) Prove that Zorn's lemma is equivalent to axiom of choice. (2) Use Zorn's Lemma to prove the existence of E.

Polynomial time algorithm - first order query, For queries Q 1 and Q 2 , w...

For queries Q 1 and Q 2 , we say Q 1 is contained in Q 2 , denoted Q 1 ⊆ Q 2 , iff Q 1 (D) ⊆ Q 2 (D) for every database D. The container problem for a fixed Query Q 0 i

Vector form of the equation of a line, Vector Form of the Equation of a Lin...

Vector Form of the Equation of a Line We have, → r = → r 0 + t → v = (x 0 ,y 0 ,z 0 ) + t (a, b, c) This is known as the vector form of the equation of a line.  The lo

g ( x ) = 3sec ( x ) -10 cot ( x ) -differentiate , Differentiate followin...

Differentiate following functions.                   g ( x ) = 3sec ( x ) -10 cot ( x ) Solution : There actually isn't a whole lot to this problem.  We'll just differentia

Airthmetic progression series, Each of the series 3+5+7+..... and 4+7+10......

Each of the series 3+5+7+..... and 4+7+10.......... is continued to 100 terms find how many terms are identical. Ans) 48 terms would be common to both the series... first take co

Pumping lemma for context free languages, 1. Construct a grammar G such tha...

1. Construct a grammar G such that L(G) = L(M) where M is the PDA in the previous question. Then show that the word aaaabb is generated by G. 2. Prove, using the Pumping Lemma f

Transition matrix for the probabilitiy, Suppose research on three major cel...

Suppose research on three major cell phones companies revealed the following transition matrix for the probability that a person with one cell phone carrier switches to another.

Examples on log rules, Examples on Log rules: Example:      Calculate...

Examples on Log rules: Example:      Calculate (1/3)log 10   2. Solution: log b n√A = log b A 1/n = (1/n)log b A (1/3)log 10 2 = log 10 3 √2 = log 10 1.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd